Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Kehluhen_US
dc.contributor.authorHuang, Szuweien_US
dc.contributor.authorChen, Yi-Hsuanen_US
dc.date.accessioned2014-12-08T15:45:49Z-
dc.date.available2014-12-08T15:45:49Z-
dc.date.issued2008en_US
dc.identifier.isbn978-0-7695-3304-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/30820-
dc.identifier.urihttp://dx.doi.org/10.1109/ICNC.2008.756en_US
dc.description.abstractApplication of financial information systems requires instant and fast response for continually changing market conditions. The purpose of this paper is to construct a mutual fund performance evaluation model utilizing the fast adaptive neural network classifier (FANNC), and to compare our results with those from a backpropagation neural networks (BPN) model. In our experiment, the FANNC approach requires much less time than the BPN approach to evaluate mutual fund performance. RMS is also superior for FANNC. These results hold for both classification problems and for prediction problems, making FANNC ideal for financial applications which require massive volumes of data and routine updates.en_US
dc.language.isoen_USen_US
dc.titleMutual Fund Performance Evaluation System Using Fast Adaptive Neural Network Classifieren_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ICNC.2008.756en_US
dc.identifier.journalICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 2, PROCEEDINGSen_US
dc.citation.spage479en_US
dc.citation.epage483en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000264527000097-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000264527000097.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.