完整後設資料紀錄
DC 欄位語言
dc.contributor.authorShieh, GWen_US
dc.date.accessioned2014-12-08T15:45:55Z-
dc.date.available2014-12-08T15:45:55Z-
dc.date.issued2000en_US
dc.identifier.issn0361-0926en_US
dc.identifier.urihttp://hdl.handle.net/11536/30881-
dc.identifier.urihttp://dx.doi.org/10.1080/03610920008832512en_US
dc.description.abstractLongitudinal studies occur frequently in many different disciplines. To fully utilize the potential value of the information contained in a longitudinal data, various multivariate linear models have been proposed. The methodology and analysis are somewhat unique in their own ways and their relationships are not well understood and presented. This article describes a general multivariate linear model for longitudinal data and attempts to provide a constructive formulation of the components in the mean response profile. The objective is to point out the extension and connections of some well-known models that have been obscured by different areas of application. More importantly, the model is expressed in a unified regression form from the subject matter considerations. Such an approach is simpler and more intuitive than other ways to modeling and parameter estimation. As a consequence the analyses of the general class of models for longitudinal data can be easily implemented with standard software.en_US
dc.language.isoen_USen_US
dc.subjectdoubly multivariate linear modelsen_US
dc.subjectGMANOVAen_US
dc.subjectgrowth curve modelsen_US
dc.subjectMANOVAen_US
dc.subjectpooled time series and cross-sectional dataen_US
dc.subjectrepeated measures designen_US
dc.subjectseemingly unrelated regression modelsen_US
dc.subjecttime-varying covariatesen_US
dc.titleGeneral multivariate linear models for longitudinal studiesen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03610920008832512en_US
dc.identifier.journalCOMMUNICATIONS IN STATISTICS-THEORY AND METHODSen_US
dc.citation.volume29en_US
dc.citation.issue4en_US
dc.citation.spage735en_US
dc.citation.epage753en_US
dc.contributor.department管理科學系zh_TW
dc.contributor.departmentDepartment of Management Scienceen_US
dc.identifier.wosnumberWOS:000086299800002-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000086299800002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。