Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Y. P.en_US
dc.contributor.authorHsu, R. Q.en_US
dc.contributor.authorWu, C. W.en_US
dc.date.accessioned2014-12-08T15:46:05Z-
dc.date.available2014-12-08T15:46:05Z-
dc.date.issued2008en_US
dc.identifier.isbn978-1-4200-8505-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/30998-
dc.description.abstractConventional mechanical inertial shock sensors typically use mechanisms such as cantilever beams or axial springs as triggering devices. Reaction time for these conventional shock sensors are either far too slow or, in many cases, fail to function completely for high G (> 300G) applications. In this study, a Micro-Electro-Mechanical (MEMS)-based high G inertial shock sensor with a measurement range of 3,000-21,000 G is presented. The triggering mechanism is a combination of cantilever and spring structure. The design of the mechanism underwent a series of analyses. Simulation results indicated that a MEMS-based high G inertial shock sensor has a faster reaction time than conventional G inertial shock sensors that use a cantilever beam or spring mechanism. Furthermore, the MEMS-based high G inertial shock sensor is sufficiently robust to survive the impact encountered in high G application where most conventional G inertial shock sensors fail.en_US
dc.language.isoen_USen_US
dc.subjectMEMSen_US
dc.subjecthigh Gen_US
dc.subjectinertial shock sensoren_US
dc.subjectspringen_US
dc.subjectproof massen_US
dc.titleFinite Element Analysis of a MEMS-Based High G Inertial Shock Sensoren_US
dc.typeArticleen_US
dc.identifier.journalNSTI NANOTECH 2008, VOL 3, TECHNICAL PROCEEDINGSen_US
dc.citation.spage565en_US
dc.citation.epage568en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000272170200146-
Appears in Collections:Conferences Paper