Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tso, SH | en_US |
dc.contributor.author | Wu, PY | en_US |
dc.date.accessioned | 2019-04-03T06:39:15Z | - |
dc.date.available | 2019-04-03T06:39:15Z | - |
dc.date.issued | 1999-09-01 | en_US |
dc.identifier.issn | 0035-7596 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1216/rmjm/1181071625 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/31106 | - |
dc.description.abstract | We show that if T is a quadratic operator on a Hilbert space, then (1) the numerical range of T is an (open or closed) elliptical disc (or its degenerate form) and (2) for every n greater than or equal to 1, the nth matricial range of T consists of n x n matrices whose numerical ranges are contained in the closure of the numerical range of T. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | numerical range | en_US |
dc.subject | matricial range | en_US |
dc.subject | quadratic operator | en_US |
dc.title | Matricial ranges of quadratic operators | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1216/rmjm/1181071625 | en_US |
dc.identifier.journal | ROCKY MOUNTAIN JOURNAL OF MATHEMATICS | en_US |
dc.citation.volume | 29 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 1139 | en_US |
dc.citation.epage | 1152 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000084541800020 | en_US |
dc.citation.woscount | 42 | en_US |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.