完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHSUEH, YCen_US
dc.date.accessioned2014-12-08T15:04:37Z-
dc.date.available2014-12-08T15:04:37Z-
dc.date.issued1993-02-25en_US
dc.identifier.issn0165-0114en_US
dc.identifier.urihttp://hdl.handle.net/11536/3115-
dc.description.abstractAn L-fuzzy set A is a mapping of a set X into another set L. The set L is called the true set of A and X is called the universe of A. It has been discussed that a better structure for the truth set L is a complete lattice-ordered monoid. Then operations on L can be directly extended to operate on L(X) and a complete lattice-ordered monoid can be obtained. In this paper, we consider operations on L(X) which are extended from operations on X by the extension principle. We will obtain a similar complete lattice-ordered monoid constituted by extended operations. Moreover, a notion of L-fuzzy numbers is proposed. Then, extended operations on L-fuzzy numbers are discussed and a distributively lattice-ordered structure is developed for L-fuzzy numbers.en_US
dc.language.isoen_USen_US
dc.subjectL-FUZZY SETen_US
dc.subjectL-FUZZY NUMBERen_US
dc.subjectGENERALIZED EXTENSION PRINCIPLEen_US
dc.subjectEXTENDED OPERATIONen_US
dc.subjectEXTENDED STRUCTUREen_US
dc.subjectCLC-MONOID, DLC-MONOID, TC-GROUPen_US
dc.titleEXTENDED LATTICE-ORDERED STRUCTURES FOR L-FUZZY SETS AND L-FUZZY NUMBERSen_US
dc.typeArticleen_US
dc.identifier.journalFUZZY SETS AND SYSTEMSen_US
dc.citation.volume54en_US
dc.citation.issue1en_US
dc.citation.spage81en_US
dc.citation.epage90en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1993KN13500009-
dc.citation.woscount0-
顯示於類別:期刊論文