Full metadata record
DC FieldValueLanguage
dc.contributor.authorHong, WTen_US
dc.contributor.authorChen, SHen_US
dc.date.accessioned2014-12-08T15:46:36Z-
dc.date.available2014-12-08T15:46:36Z-
dc.date.issued1999-05-27en_US
dc.identifier.issn0013-5194en_US
dc.identifier.urihttp://dx.doi.org/10.1049/el:19990637en_US
dc.identifier.urihttp://hdl.handle.net/11536/31334-
dc.description.abstractAn RNN-based robust signal bias removal (RRSBR) method is proposed for improving both the recognition performance and the computational efficiency of the SBR method fbr adverse Mandarin speech recognition. It differs from the SBR method in using three broad-class sub-codebooks to encode the feature vector of each frame and combining the three encoding residuals to form the frame-level signal bias estimate. A novel approach involving softly combining the board-class encoding residuals using dynamic weighting functions generated by an RNN is applied. Experimental results show that the RRSBR method significantly outperforms the SBR method.en_US
dc.language.isoen_USen_US
dc.titleRobust SBR method for adverse Mandarin speech recognitionen_US
dc.typeArticleen_US
dc.identifier.doi10.1049/el:19990637en_US
dc.identifier.journalELECTRONICS LETTERSen_US
dc.citation.volume35en_US
dc.citation.issue11en_US
dc.citation.spage875en_US
dc.citation.epage876en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000080971500016-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000080971500016.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.