完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chang, GJ | en_US |
dc.date.accessioned | 2014-12-08T15:46:52Z | - |
dc.date.available | 2014-12-08T15:46:52Z | - |
dc.date.issued | 1999-03-01 | en_US |
dc.identifier.issn | 1027-5487 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/31503 | - |
dc.description.abstract | For a fixed positive integer k, the linear k-arboricity la(k)(G) of a graph G is the minimum number l such that the edge set E(G) can be partitioned into l disjoint sets, each induces a subgraph whose components are paths of lengths at most k. This paper examines linear k-arboricity from an algorithmic point of view. In particular, we present a linear-time algorithm for determining whether a tree T has la(2)(T) less than or equal to m. We also give a characterization for a tree T with maximum degree 2m having la(2)(T) = m. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | linear forest | en_US |
dc.subject | linear k-forest | en_US |
dc.subject | linear arboricity | en_US |
dc.subject | linear k-arboricity | en_US |
dc.subject | tree | en_US |
dc.subject | leaf | en_US |
dc.subject | penultimate vertex | en_US |
dc.subject | algorithm | en_US |
dc.subject | NP-complete | en_US |
dc.title | Algorithmic aspects of linear k-arboricity | en_US |
dc.type | Article | en_US |
dc.identifier.journal | TAIWANESE JOURNAL OF MATHEMATICS | en_US |
dc.citation.volume | 3 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 73 | en_US |
dc.citation.epage | 81 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000080231800004 | - |
dc.citation.woscount | 48 | - |
顯示於類別: | 期刊論文 |