完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, GJen_US
dc.date.accessioned2014-12-08T15:46:52Z-
dc.date.available2014-12-08T15:46:52Z-
dc.date.issued1999-03-01en_US
dc.identifier.issn1027-5487en_US
dc.identifier.urihttp://hdl.handle.net/11536/31503-
dc.description.abstractFor a fixed positive integer k, the linear k-arboricity la(k)(G) of a graph G is the minimum number l such that the edge set E(G) can be partitioned into l disjoint sets, each induces a subgraph whose components are paths of lengths at most k. This paper examines linear k-arboricity from an algorithmic point of view. In particular, we present a linear-time algorithm for determining whether a tree T has la(2)(T) less than or equal to m. We also give a characterization for a tree T with maximum degree 2m having la(2)(T) = m.en_US
dc.language.isoen_USen_US
dc.subjectlinear foresten_US
dc.subjectlinear k-foresten_US
dc.subjectlinear arboricityen_US
dc.subjectlinear k-arboricityen_US
dc.subjecttreeen_US
dc.subjectleafen_US
dc.subjectpenultimate vertexen_US
dc.subjectalgorithmen_US
dc.subjectNP-completeen_US
dc.titleAlgorithmic aspects of linear k-arboricityen_US
dc.typeArticleen_US
dc.identifier.journalTAIWANESE JOURNAL OF MATHEMATICSen_US
dc.citation.volume3en_US
dc.citation.issue1en_US
dc.citation.spage73en_US
dc.citation.epage81en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000080231800004-
dc.citation.woscount48-
顯示於類別:期刊論文