完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, GJen_US
dc.contributor.authorJou, MJen_US
dc.date.accessioned2014-12-08T15:46:53Z-
dc.date.available2014-12-08T15:46:53Z-
dc.date.issued1999-02-28en_US
dc.identifier.issn0012-365Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0012-365X(98)00231-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/31512-
dc.description.abstractErdos and Moser raised the problem of determining the largest number of maximal independent sets of a general graph G of order n and those graphs achieving this largest number. This problem was solved by Erdos, and later Moon and Moser. It then was extensively studied for various classes of graphs, including trees, forests, (connected) graphs with at most one cycle, bipartite graphs, connected graphs, k-connected graphs and triangle-free graphs. This paper studies the problem for connected triangle-free graphs. In particular, we prove that every connected triangle-free graph of order n greater than or equal to 22 has at most 5 . 2((n-6)/2) (respectively, 2((n-1)/2)) maximal independent sets if n is even (respectively, odd). Extremal graphs achieving this maximum value are also characterized. (C) 1999 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectindependent seten_US
dc.subjectmaximal independent seten_US
dc.subjectconnected graphen_US
dc.subjecttriangleen_US
dc.subjectunionen_US
dc.subjectleafen_US
dc.subjectpathen_US
dc.subjectcycleen_US
dc.subjectneighborhooden_US
dc.titleThe number of maximal independent sets in connected triangle-free graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0012-365X(98)00231-3en_US
dc.identifier.journalDISCRETE MATHEMATICSen_US
dc.citation.volume197en_US
dc.citation.issue1-3en_US
dc.citation.spage169en_US
dc.citation.epage178en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000078827900015-
dc.citation.woscount10-
顯示於類別:期刊論文