完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFu, WSen_US
dc.contributor.authorHuang, HCen_US
dc.date.accessioned2014-12-08T15:47:06Z-
dc.date.available2014-12-08T15:47:06Z-
dc.date.issued1999-01-01en_US
dc.identifier.issn0017-9310en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0017-9310(98)00159-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/31601-
dc.description.abstractDue to the non-uniform distribution and fractural structure of the beads inside a porous medium, the porosity distributed in the porous medium is random for most realistic situations. Therefore, the effects of the porosity distributed casually inside a porous block mounted on a heated region with a laminar slot impinging jet on flow and thermal fields are investigated numerically. A numerical method of SIMPLEC is adopted to solve governing equations, as for the energy equation, a one-equation thermal model with Van Driest's wall function is adopted. AU the non-Darcian effects including the solid boundary and inertial effects are considered and three different porosity models of constant, variable and random are examined. The results indicate that the relationship between the local Nusselt number Nu(x) and the near wall local porosity epsilon(x) is a negative correlation. Consequently, in order to enhance the thermal performance of the porous medium, the porosity near the solid plate should be smaller to make the conductive heat transfer to be dominant. (C) 1998 Elsevier Science Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.titleEffects of a random porosity model on heat transfer performance of porous mediaen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0017-9310(98)00159-8en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFERen_US
dc.citation.volume42en_US
dc.citation.issue1en_US
dc.citation.spage13en_US
dc.citation.epage25en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000077343700002-
dc.citation.woscount19-
顯示於類別:期刊論文


文件中的檔案:

  1. 000077343700002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。