Full metadata record
DC FieldValueLanguage
dc.contributor.authorSUN, KTen_US
dc.contributor.authorFU, HCen_US
dc.date.accessioned2014-12-08T15:04:41Z-
dc.date.available2014-12-08T15:04:41Z-
dc.date.issued1993en_US
dc.identifier.issn0278-081Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/3182-
dc.identifier.urihttp://dx.doi.org/10.1007/BF01189876en_US
dc.description.abstractA neural network for the traffic control problem applied to reverse baseline networks has been proposed in this paper. This problem has been first represented by an energy function. A neural network is applied for maximizing die energy of the function under the constraints of the reverse baseline network. The number of iteration steps in our neural network is limited by a performed upper bound O(n), where n is the size of an n x n network. The throughputs of our neural network have been shown by the empirical results to be better than the conventional algorithm (modified Bipartite Matching Algorithm) when the packet densities rise higher than 50%.en_US
dc.language.isoen_USen_US
dc.titleA NEURAL NETWORK APPROACH TO THE TRAFFIC CONTROL PROBLEM IN REVERSE BASE-LINE NETWORKSen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/BF01189876en_US
dc.identifier.journalCIRCUITS SYSTEMS AND SIGNAL PROCESSINGen_US
dc.citation.volume12en_US
dc.citation.issue2en_US
dc.citation.spage247en_US
dc.citation.epage261en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1993KJ65300007-
dc.citation.woscount1-
Appears in Collections:Articles