完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Ching-Chunen_US
dc.contributor.authorWang, Sheng-Jyhen_US
dc.contributor.authorChang, Yao-Jenen_US
dc.contributor.authorChen, Tsuhanen_US
dc.date.accessioned2014-12-08T15:47:45Z-
dc.date.available2014-12-08T15:47:45Z-
dc.date.issued2008en_US
dc.identifier.isbn978-1-4244-1483-3en_US
dc.identifier.issn1520-6149en_US
dc.identifier.urihttp://hdl.handle.net/11536/31931-
dc.description.abstracthi this paper, a 3-layer Bayesian hierarchical detection framework (BHDF) is proposed for robust parking space detection. In practice, the challenges of the parking space detection problem come from luminance variations, inter-occlusions among cars, and occlusions caused by environmental obstacles. Instead of determining the status of parking spaces one by one, the proposed BHDF framework models the inter-occluded patterns as semantic knowledge and couple local classifiers with adjacency constraints to determine the status of parking spaces in a row-by-row manner. By applying the BHDF to the parking space detection problem, the available parking spaces and the labeling of parked cars can be achieved in a robust and efficient manner. Furthermore, this BHDF framework is generic enough to be used for various kinds of detection and segmentation applications.en_US
dc.language.isoen_USen_US
dc.subjectgraphical modelsen_US
dc.subjectsegmentationen_US
dc.subjectsemantic detectionen_US
dc.subjectoptimizationen_US
dc.subjectBayesian frameworken_US
dc.titleA Bayesian hierarchical detection framework for parking space detectionen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12en_US
dc.citation.spage2097en_US
dc.citation.epage2100en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000257456701186-
顯示於類別:會議論文