標題: | TWO-STRATEGY REINFORCEMENT EVOLUTIONARY ALGORITHM USING DATA-MINING BASED CROSSOVER STRATEGY WITH TSK-TYPE FUZZY CONTROLLERS |
作者: | Lin, Sheng-Fuu Cheng, Yi-Chang 電機工程學系 Department of Electrical and Computer Engineering |
關鍵字: | Fuzzy system;Control;Symbiotic evolution;Reinforcement learning;FP-growth |
公開日期: | 1-Sep-2010 |
摘要: | This paper proposes a two-strategy reinforcement evolutionary algorithm using data-mining crossover strategy (TSR-EADCS) with a TSK-type fuzzy controller (TFC) for solving various control problems. The purpose of the R-EA DCS is not only to improve the design of traditional reinforcement signal but also to determine the suitable rules in a TEC and the suitable groups that are selected to perform crossover operation. Therefore, this paper proposes a two-strategy reinforcement signal to improve the performance of the traditional reinforcement signal design and uses the data mining technique to find suitable fuzzy rules and groups for evolution. The proposed TSR-EADCS consists of both structure and parameter learning. Ins fracture learning, the TSR-EADCS uses the self adaptive method to determine the suitability of TEC models between different numbers of fuzzy rules. In parameter learning, the TSR-EADCS uses the data-mining crossover strategy which is based on frequent pattern growth to select the suitable groups that are used to perform crossover operation. Illustrative examples are conducted to show the performance and applicability of the TSR-EADCS. |
URI: | http://hdl.handle.net/11536/32218 |
ISSN: | 1349-4198 |
期刊: | INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL |
Volume: | 6 |
Issue: | 9 |
起始頁: | 3863 |
結束頁: | 3885 |
Appears in Collections: | Articles |