Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Wen-Chihen_US
dc.contributor.authorChen, An-Pinen_US
dc.date.accessioned2014-12-08T15:48:24Z-
dc.date.available2014-12-08T15:48:24Z-
dc.date.issued2010-09-01en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2010.03.001en_US
dc.identifier.urihttp://hdl.handle.net/11536/32239-
dc.description.abstractThere are several studies about extended classification system (XCS) in past years. XCS model can dynamically learn and adapt to the change of environments for maximizing the desired goals. This paper conducts simulation to apply XCS to global asset allocation in the country-specific exchanged traded funds (ETFs). Since international stock price trend is influenced by unknown and unpredictable surroundings, using XCS to model the fluctuations on global financial market allows for the discovery of the patterns of the future trends. As such, the benefits of international asset diversification can be achieved in a tax-efficient way with country-specific ETFs at a low transaction cost with minimized tracking error. These empirical results indicate that XCS is capable of evolving over time, and thus XCS can provide a good indicator for future global asset allocation decision-making aiming at maximized profit. (C) 2010 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectExtended classification systemen_US
dc.subjectLearning classifier systemen_US
dc.subjectExchanged traded fundsen_US
dc.subjectFinance predicationen_US
dc.titleStrategy of global asset allocation using extended classifier systemen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2010.03.001en_US
dc.identifier.journalEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.citation.volume37en_US
dc.citation.issue9en_US
dc.citation.spage6611en_US
dc.citation.epage6617en_US
dc.contributor.department資訊管理與財務金融系
註:原資管所+財金所
zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000278424600057-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000278424600057.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.