完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Wunfanen_US
dc.contributor.authorIrle, Stephanen_US
dc.contributor.authorWitek, Henryk A.en_US
dc.date.accessioned2014-12-08T15:48:38Z-
dc.date.available2014-12-08T15:48:38Z-
dc.date.issued2010-08-01en_US
dc.identifier.issn1936-0851en_US
dc.identifier.urihttp://dx.doi.org/10.1021/nn1004205en_US
dc.identifier.urihttp://hdl.handle.net/11536/32356-
dc.description.abstractStructural characterization of nanodiamonds by vibrational spectroscopy requires knowledge of the factors determining the spectra. Raman spectroscopy is widely used to detect the diamond phase in nanodiamond powders and films, but several spectral features are still poorly understood. Here we present a theoretical study of the evolution of diamond hydrocarbon Raman spectra with increasing size, from the adamantane molecule to similar to 3 nm large tetrahedral and octahedral particles of T(d) symmetry, containing up to about 1000 carbon atoms. The self-consistent-charge density functional tight-binding method (SCC-DFTB) was used for the calculation of harmonic first-order Raman spectra. We demonstrate very good agreement with Raman spectra computed by standard density functional theory (DFT) for the smaller model systems. The evolution of the Raman patterns is smooth, and convergence to the bulk limit could clearly be observed in case of the acoustic vibrational modes (omega(A) = 0 cm(-1)). We found a simple relationship between nanodiamond size and vibrational frequency, which is analogous to the corresponding equation for the radial breathing mode of single-walled carbon nanotubes. The T(2) modes of octahedral diamond hydrocarbons coalesce faster to the bulk optical vibrational mode (in experiment, omega(0) = 1332 cm(-1)) than those of tetrahedral particles, consistent with the fact that the bulk/surface ratio is more favorable for octahedral particles. Our simulations unequivocally show that controversial Raman features around 500 and 1150 cm(-1) do not originate from the nanodiamond crystals, and that the nanocrystal shape plays an important role in the appearance of the Raman spectra even in the 3 nm domain.en_US
dc.language.isoen_USen_US
dc.subjectRaman intensitiesen_US
dc.subjectvibrational spectroscopyen_US
dc.subjectnanodiamondsen_US
dc.subjectdensity functional tight bindingen_US
dc.subjectsize evolution of Raman spectraen_US
dc.titleConvergence in the Evolution of Nanodiamond Raman Spectra with Particle Size: A Theoretical Investigationen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/nn1004205en_US
dc.identifier.journalACS NANOen_US
dc.citation.volume4en_US
dc.citation.issue8en_US
dc.citation.spage4475en_US
dc.citation.epage4486en_US
dc.contributor.department應用化學系zh_TW
dc.contributor.department應用化學系分子科學碩博班zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.contributor.departmentInstitute of Molecular scienceen_US
dc.identifier.wosnumberWOS:000281052700019-
dc.citation.woscount12-
顯示於類別:期刊論文


文件中的檔案:

  1. 000281052700019.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。