完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsieh, Sung-Huaien_US
dc.contributor.authorCheng, Po-Hsunen_US
dc.contributor.authorChen, Chi-Huangen_US
dc.contributor.authorHuang, Kuo-Hsuanen_US
dc.contributor.authorChen, Po-Haoen_US
dc.contributor.authorWeng, Yung-Chingen_US
dc.contributor.authorHsieh, Sheau-Lingen_US
dc.contributor.authorLai, Feipeien_US
dc.date.accessioned2014-12-08T15:48:39Z-
dc.date.available2014-12-08T15:48:39Z-
dc.date.issued2010-08-01en_US
dc.identifier.issn0148-5598en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10916-009-9287-4en_US
dc.identifier.urihttp://hdl.handle.net/11536/32365-
dc.description.abstractThe clinical symptoms of metabolic disorders during neonatal period are often not apparent. If not treated early, irreversible damages such as mental retardation may occur, even death. Therefore, practicing newborn screening is essential, imperative to prevent neonatal from these damages. In the paper, we establish a newborn screening model that utilizes Support Vector Machines (SVM) techniques and enhancements to evaluate, interpret the Methylmalonic Acidemia (MMA) metabolic disorders. The model encompasses the Feature Selections, Grid Search, Cross Validations as well as multi model Voting Mechanism. In the model, the predicting accuracy, sensitivity and specificity of MMA can be improved dramatically. The model will be able to apply to other metabolic diseases as well.en_US
dc.language.isoen_USen_US
dc.subjectNewborn screeningen_US
dc.subjectTandem mass spectrometryen_US
dc.subjectSupport vector machinesen_US
dc.subjectMethylmalonic acidemiaen_US
dc.titleA Multi-Voting Enhancement for Newborn Screening Healthcare Information Systemen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10916-009-9287-4en_US
dc.identifier.journalJOURNAL OF MEDICAL SYSTEMSen_US
dc.citation.volume34en_US
dc.citation.issue4en_US
dc.citation.spage727en_US
dc.citation.epage733en_US
dc.contributor.department資訊技術服務中心zh_TW
dc.contributor.departmentInformation Technology Services Centeren_US
dc.identifier.wosnumberWOS:000280071200033-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000280071200033.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。