完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, JLen_US
dc.contributor.authorLee, HJen_US
dc.date.accessioned2014-12-08T15:48:45Z-
dc.date.available2014-12-08T15:48:45Z-
dc.date.issued1998-09-01en_US
dc.identifier.issn0031-3203en_US
dc.identifier.urihttp://hdl.handle.net/11536/32412-
dc.description.abstractThis paper presents an efficient strip-projection-based approach to extracting form structures from form documents for office automation. To locate the data, we have to extract and interpret the form structure. In this paper, a strip projection method is presented for extracting the form structure. We first segment input form images into uniform vertical and horizontal strips. Since most form lines are vertical or horizontal, we project the image of each vertical strip horizontally and that of each horizontal strip vertically. The peak positions in these projection profiles denote possible locations of lines in form images. We then extract the lines starting with the possible line positions in the source image. After all lines have been extracted, redundant lines are removed using a line-verification algorithm and broken lines are linked using a line-merging algorithm. Experimental results show that the proposed method can extract form structures from A4-sized documents in about 3 seconds which is very efficient, compared with the methods based on Hough transformation and run-based line-detection algorithms. (C) 1998 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectform-document processingen_US
dc.subjectstrip projectionen_US
dc.subjectline-detection and verificationen_US
dc.subjectfield extractionen_US
dc.titleAn efficient algorithm for form structure extraction using strip projectionen_US
dc.typeArticleen_US
dc.identifier.journalPATTERN RECOGNITIONen_US
dc.citation.volume31en_US
dc.citation.issue9en_US
dc.citation.spage1353en_US
dc.citation.epage1368en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000074932600013-
dc.citation.woscount28-
顯示於類別:期刊論文


文件中的檔案:

  1. 000074932600013.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。