Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuan, WCen_US
dc.date.accessioned2014-12-08T15:48:46Z-
dc.date.available2014-12-08T15:48:46Z-
dc.date.issued1998-09-01en_US
dc.identifier.issn1027-5487en_US
dc.identifier.urihttp://hdl.handle.net/11536/32441-
dc.description.abstractLet gamma be the adiabatic index of self-gravitating, spherically symmetric motion of compressible viscous gas-star. When gamma is an element of (1, 2], we prove the existence of nonisentropic equilibrium. Furthermore, at the adiabatic index gamma = 4/3, we found a family of particular solutions which corresponds to an expansive (contractive) gaseous star. Moreover, we find that there is a critical total mass M-0. If the total mass M of star is less than M-0, then the star expands infinitely. However, if M greater than or equal to M-0, then there is an "escape velocity" v(e)r associated with M and the initial configuration of the star. If v(0, r) 2 v(e)r, then the star will expand infinitely. If v(0, r) greater than or equal to v(e)r, then it will collapse after a finite time.en_US
dc.language.isoen_USen_US
dc.subjectself-gravitatingen_US
dc.subjectcompressibleen_US
dc.subjectviscousen_US
dc.subjectnonisentropicen_US
dc.subjectPohozaev identityen_US
dc.titleThe critical mass of compressible viscous gas-starsen_US
dc.typeArticleen_US
dc.identifier.journalTAIWANESE JOURNAL OF MATHEMATICSen_US
dc.citation.volume2en_US
dc.citation.issue3en_US
dc.citation.spage369en_US
dc.citation.epage381en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000078339100011-
dc.citation.woscount0-
Appears in Collections:Articles