Full metadata record
DC FieldValueLanguage
dc.contributor.authorHong, TPen_US
dc.contributor.authorTseng, SSen_US
dc.date.accessioned2014-12-08T15:49:04Z-
dc.date.available2014-12-08T15:49:04Z-
dc.date.issued1998-06-01en_US
dc.identifier.issn1016-2364en_US
dc.identifier.urihttp://hdl.handle.net/11536/32607-
dc.description.abstractAmong incremental learning strategies, the "version space" learning strategy is one of the most well known. This learning strategy is, however, applicable only to learning conjunctive concepts. When the concepts to be learned are in disjunctive form, the version space learning strategy returns a null Version space that cannot correctly represent the desired concepts. In this paper, we present a modification of the original version space strategy that enables learning of disjunctive concepts. The new proposed version-space-based learning strategy, called the "primal-dual version-spaces" learning strategy, learns disjunctive concepts incrementally and without saving past training instances. The correctness of its underlying algorithm is analyzed and proven.en_US
dc.language.isoen_USen_US
dc.subjectversion spaceen_US
dc.subjectincremental learningen_US
dc.subjectmultiple version spacesen_US
dc.subjectdisjunctive conceptsen_US
dc.subjectprimal version spaceen_US
dc.subjectdual version spaceen_US
dc.titlePrimal-dual version spaces for acquisition of disjunctive conceptsen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF INFORMATION SCIENCE AND ENGINEERINGen_US
dc.citation.volume14en_US
dc.citation.issue2en_US
dc.citation.spage327en_US
dc.citation.epage345en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000074370600002-
dc.citation.woscount0-
Appears in Collections:Articles