完整後設資料紀錄
DC 欄位語言
dc.contributor.authorGe, ZMen_US
dc.contributor.authorKu, FNen_US
dc.date.accessioned2014-12-08T15:49:16Z-
dc.date.available2014-12-08T15:49:16Z-
dc.date.issued1998-03-01en_US
dc.identifier.issn0021-4922en_US
dc.identifier.urihttp://dx.doi.org/10.1143/JJAP.37.1021en_US
dc.identifier.urihttp://hdl.handle.net/11536/32747-
dc.description.abstractIn this paper. explicit calculations that extend the applicability of the Melnikov method to include strongly odd nonlinear and large forcing amplitude oscillating systems, are presented. We consider the response of the strongly nonlinear oscillating system governed by an equation of motion containing a parameter epsilon which need not be small. Phenomena considered are steady state response of strongly nonlinear oscillators subject to harmonic excitation. Two examples are given, they are the strongly nonlinear Duffing's equation and a pendulum suspended on a rotating arm. Finally, a adjustable factor is used to fit the simulation data. The theoretical chaotic behavior regions thus defined and plotted in the forcing amplitude versus parameter plane give the lower bounds for the true chaotic motion zones.en_US
dc.language.isoen_USen_US
dc.subjectMelnikov methoden_US
dc.subjectstrongly nonlinearen_US
dc.subjecttime transformen_US
dc.subjectDuffing's equationen_US
dc.subjectpendulumen_US
dc.titleA Melnikov method for strongly odd nonlinear oscillatorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1143/JJAP.37.1021en_US
dc.identifier.journalJAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERSen_US
dc.citation.volume37en_US
dc.citation.issue3Aen_US
dc.citation.spage1021en_US
dc.citation.epage1028en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000073522100059-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000073522100059.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。