Full metadata record
DC FieldValueLanguage
dc.contributor.authorHSU, LHen_US
dc.contributor.authorWANG, PFen_US
dc.contributor.authorWU, CTen_US
dc.date.accessioned2014-12-08T15:04:47Z-
dc.date.available2014-12-08T15:04:47Z-
dc.date.issued1992en_US
dc.identifier.issn0167-8191en_US
dc.identifier.urihttp://hdl.handle.net/11536/3286-
dc.description.abstractGiven a weighted graph G, the weight of a spanning tree T, denoted by w(T), is defined as the total weight of all edges in T. A spanning tree T in G is called a minimum spanning tree if w(T) less-than-or-equal-to w(T') for all spanning trees T' in G. Let w(G) denote the weight of the minimum spanning tree of G if G is connected; otherwise, w(G) = infinity. An edge e is called a most vital edge in G if w(G - e) greater-than-or-equal-to w(G - e') for every edge e' of G where G - e' denotes the partial graph obtained by removing e' from G. In this paper, we present several cost-optimal parallel algorithms, under different computation models, to find the most vital edge in a weighted graph.en_US
dc.language.isoen_USen_US
dc.subjectWEIGHTED GRAPHSen_US
dc.subjectMINIMUM SPANNING TREEen_US
dc.subjectCOMPUTATION MODELSen_US
dc.subjectVITAL EDGEen_US
dc.subjectCOST-OPTIMAL PARALLEL ALGORITHMSen_US
dc.titlePARALLEL ALGORITHMS FOR FINDING THE MOST VITAL EDGE WITH RESPECT TO MINIMUM SPANNING TREEen_US
dc.typeArticleen_US
dc.identifier.journalPARALLEL COMPUTINGen_US
dc.citation.volume18en_US
dc.citation.issue10en_US
dc.citation.spage1143en_US
dc.citation.epage1155en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1992JZ65500004-
dc.citation.woscount12-
Appears in Collections:Articles