Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, MFen_US
dc.contributor.authorChuu, DSen_US
dc.date.accessioned2019-04-03T06:38:44Z-
dc.date.available2019-04-03T06:38:44Z-
dc.date.issued1997-08-15en_US
dc.identifier.issn0163-1829en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevB.56.4996en_US
dc.identifier.urihttp://hdl.handle.net/11536/368-
dc.description.abstractNanotube geometry determines electronic structure and thus impurity screening. A metallic carbon nanotube could effectively screen a charged impurity, while a semiconducting carbon nanotube could not. The ability to screen a long-range Coulomb field is mainly determined by whether there are: Free carriers in the subbands nearest the Fermi level. The detailed screening propel-ties are sensitive to the impurity position, and the tubular structure (such as radius and chiral angle). Strong, short-wavelength Friedel oscillations at long distances are found to exist only in metallic armchair nanotubes. They are relatively obvious for a smaller armchair nanotube, and could survive at room temperature.en_US
dc.language.isoen_USen_US
dc.titleImpurity screening in carbon nanotubesen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevB.56.4996en_US
dc.identifier.journalPHYSICAL REVIEW Ben_US
dc.citation.volume56en_US
dc.citation.issue8en_US
dc.citation.spage4996en_US
dc.citation.epage5002en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:A1997XV00700105en_US
dc.citation.woscount36en_US
Appears in Collections:Articles


Files in This Item:

  1. 91c55ca7573e642e64b8b62b18fe5539.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.