Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 簡鶴年 | en_US |
dc.contributor.author | Ho-Nien Chien | en_US |
dc.contributor.author | 陳明哲 | en_US |
dc.contributor.author | Ming-Jer Chen | en_US |
dc.date.accessioned | 2014-12-12T01:13:37Z | - |
dc.date.available | 2014-12-12T01:13:37Z | - |
dc.date.issued | 2007 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT009511537 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/38077 | - |
dc.description.abstract | 在過去的數十年中,為了追求高積集度、高速度、以及低功率消耗的元件表現,互補式金氧半場效電晶體的元件尺寸不斷地被縮小。此篇研究論文的目的是根據元件量子物理的觀念,針對一個p型的金氧半場效電晶體,在其形成反轉層時對等效的電洞遷移率建立了一個簡單的計算模型,並將程式模擬的結果和”普適曲線”的實驗結果做比較。 較詳細的次能帶結構計算可以由k∙p的方法求解一維的薛丁格和波松方程式得到。而在我們的模型裡面,我們使用了求解4×4 Luttinger-Kohn矩陣的特徵值的方法來得到修正過的次能帶結構。除此之外,我們使用了等效質量的模型分別去推算量子化等效質量、能態密度等效質量以及導電度等效質量。 我們考慮了三個散射模型:聲學聲子散射、光學聲子散射和表面粗糙度散射。最終,我們建立了一個等效的電洞遷移率模型並將結果和Takagi教授在不同溫度下的實驗結果做比較。 | zh_TW |
dc.description.abstract | In pursuit of high integration density, high speed and low power consumption, complementary metal-oxide-semiconductor (CMOS) devices have been undergoing a progressive down-scaling strategy over the past few decades. The purpose of our study is to build a simple hole mobility model in the inversion layer of a p-type metal-oxide-semiconductor field effect transistor (pMOSFET) based on quantum device physics and compare the results with the experimental data on the so called universal curves. A detailed subband structure calculation is obtained by solving the one-dimensional Schrodinger and Poisson equations with a six-band k•p procedure. In our model, however, we have used a modified subband structure which is actually the solution of the eigenvalue problem in a 4×4 Luttinger-Kohn matrix. Besides, we have also used an equivalent effective mass model to derive the quantization-direction effective mass, the density-of-states effective mass, and the conductivity effective mass. Three scattering mechanisms are included in our model: acoustic phonon scattering, optical phonon scattering, and surface roughness scattering. Finally, we build a modified hole mobility model and compare the calculation results with Takagi’s data for various temperatures. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 遷移率 | zh_TW |
dc.subject | 量子力學 | zh_TW |
dc.subject | 等效質量 | zh_TW |
dc.subject | 自洽流程 | zh_TW |
dc.subject | Mobility | en_US |
dc.subject | Quantum Mechanics | en_US |
dc.subject | Effective Mass | en_US |
dc.subject | Self-Consistent Procedure | en_US |
dc.title | p型金氧半電晶體反轉層電洞遷移率的物理計算 | zh_TW |
dc.title | Physics-Based Calculation of Hole Inversion-Layer Mobility in pMOSFETs | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 電子研究所 | zh_TW |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.