完整後設資料紀錄
DC 欄位語言
dc.contributor.author鍾釆蓉en_US
dc.contributor.authorTsia-Jung Chungen_US
dc.contributor.author林進燈en_US
dc.contributor.author張志永en_US
dc.contributor.authorChin-Teng Linen_US
dc.contributor.authorJyh-Yeong Changen_US
dc.date.accessioned2014-12-12T01:14:16Z-
dc.date.available2014-12-12T01:14:16Z-
dc.date.issued2007en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009512514en_US
dc.identifier.urihttp://hdl.handle.net/11536/38233-
dc.description.abstract近幾年來,人物偵測及追蹤在電腦視覺中是一項常被深入探討的領域,且其可被廣泛應用在居家照護、保全及病人監控等系統。本論文提出一改良式獨立成分分析技術的人形自動偵測系統。我們用獨立成入分析法抽取辨識特徵,且以條件熵來做為特微選擇的依據,以此得到具有良好辨識能力且具有代表性的特徵。強建的支持向量機則為我們系統中主要的數據分類法。我們的實驗環境包含室內及室外,而監視畫面中的移動物體則有行人、動物及車子等等。 我們使用背景相減法取出畫面中的移動物體。為了處理複雜背景的情況,使用高斯混合模型來建構背景。針對移動物體被部分遮避的情形,我們提出金字塔型橢圓形頭部偵測法來分離它們。此外,利用簡單的色彩資訊及卡爾曼濾波器進行移動物體的追蹤及動向預測。zh_TW
dc.description.abstractIn recent years, video based human detection and tracking are a popular research area, and it has been used in widely applications such as homecare, security, patient monitoring and so on. This paper introduces a human detection system using modified Independent Components Analysis (ICA). The ICA features are selected by conditional entropy and classified by Support Vector Machine (SVM). The proposed system monitors the movement of human, animals or vehicles which across a secured area, and it works well in indoor or outdoor environment. The background subtraction is used to extract moving objects. In order to handle situations where the background of the scene is cluttered and not completely static but contains small motion, we models the background based on Gaussian mixture model (GMM). In complex situation, the moving object may disappear totally and partially due to occlusion by other objects. A fitting ellipse function based modification pyramid method is used for separating some multi-person occlusion. Our system combines with Kalman filter to estimate motion information and use the information in predicting the appearance of targets in succeeding frames.en_US
dc.language.isoen_USen_US
dc.subject獨立成分分析zh_TW
dc.subject條件熵zh_TW
dc.subject支持向量機zh_TW
dc.subject人形辨識zh_TW
dc.subject人物偵測zh_TW
dc.subjectIndependent Component Analysisen_US
dc.subjectConditional Entropyen_US
dc.subjectSupport Vector Machineen_US
dc.subjectHumsn Detectionen_US
dc.subjectTrackingen_US
dc.title基於改良式獨立成分分析之人物偵測與追蹤zh_TW
dc.titleHuman Detection and Tracking Based on Modified Independent Component Analysisen_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 251401.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。