Full metadata record
DC FieldValueLanguage
dc.contributor.author黃兆民en_US
dc.contributor.authorChau Min Huangen_US
dc.contributor.author白明憲en_US
dc.date.accessioned2014-12-12T01:15:43Z-
dc.date.available2014-12-12T01:15:43Z-
dc.date.issued2007en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009514595en_US
dc.identifier.urihttp://hdl.handle.net/11536/38588-
dc.description.abstract本專利目的在建立一個智慧型揚聲器失真診斷專家系統。揚聲器工作在大訊號的情形下,許多揚聲器部位的非線性效應便會顯現,非線性會造成聲音的失真(Distortion) 破壞音質。過往針對揚聲器缺陷的診斷仰賴專門人士進行人工判讀,在效率、方便性、一致性上均不及電腦。本系統使用模糊類神經網路架構 (Neural Fuzzy System)製作專門用於揚聲器缺陷診斷的專家系統,針對不同的失真型態,可以診斷出造成失真的來源並提出改善建議。文末,兩個真實的揚聲器將作為實驗品,比較此專家系統與傳統方法的診斷結果。結果可顯示,兩者診斷結果吻合,且專家系統較傳統診斷方法更為簡單、更有效率。zh_TW
dc.description.abstractAn intelligent diagnostic system for the voice-coil loudspeakers is proposed. The defects discussed in this paper are caused by loudspeaker nonlinearities. When a loudspeaker works in the large signal domain, many nonlinearities of the loudspeaker may appear, and nonlinearities cause distortions destroying the sound quality. This intelligent diagnostic system consists of a defect database and a fault inference module. There are six kinds of defects chosen in this paper, and a large signal modeling technique using the electromechanical analogous circuit is employed for generating the defect database. A neural fuzzy network is exploited for intelligent inference of defects base on the defect database. Experiments of two real loudspeakers indicate the reliability of this diagnostic system.en_US
dc.language.isoen_USen_US
dc.subject診斷系統zh_TW
dc.subject動圈式揚聲器zh_TW
dc.subject非線性zh_TW
dc.subjectdiagnostic systemen_US
dc.subjectvoice-coil loudspeakeren_US
dc.subjectnonlinearityen_US
dc.title智慧型揚聲器非線性診斷系統zh_TW
dc.titleExpert diagnostic system for voice-coil loudspeakers using nonlinear modelingen_US
dc.typeThesisen_US
dc.contributor.department機械工程學系zh_TW
Appears in Collections:Thesis