完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 陳鈺婷 | en_US |
dc.contributor.author | Yu-Ting Chen | en_US |
dc.contributor.author | 劉敦仁 | en_US |
dc.contributor.author | Duen-Ren Liu | en_US |
dc.date.accessioned | 2014-12-12T01:18:00Z | - |
dc.date.available | 2014-12-12T01:18:00Z | - |
dc.date.issued | 2007 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT009534508 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/39192 | - |
dc.description.abstract | 在網際網路便捷的現代社會,企業逐漸朝向多重通路(Multi-Channel)行銷模式發展,顧客能選擇自己較喜好的通路來採購商品。企業若能整合與分析各通路的交易記錄,便能為顧客提供個人化的推薦服務,並提升顧客忠誠度。 為降低交易記錄稀疏問題(Data Sparsity),本研究提出一個雙重通路複合式協同過濾(CF)推薦方法,整合顧客在不同通路下的交易記錄,並基於Nearst-Neighbor的協同過濾推薦方法,結合User-based CF與Item-based CF進行產品推薦,以提升推薦品質。實驗結果顯示,本研究所提之雙重通路複合式協同過濾法能提升產品推薦品質。 | zh_TW |
dc.description.abstract | The convenience of Internet makes enterprises employ Multi-Channel to develop the marketing models. Customers can choose prefer channels to make purchases from enterprises. Integrating and analyzing transactions from Multi-Channel can provide personal recommendation to increase customer loyalty. To reduce the issue of data sparsity in transaction records, this research proposes a Hybrid Collaborative Filtering (CF) in dual channels for product recommendation. The proposed method employs Nearst-Neighbor approach by integrating the User-based CF and Item-based CF. The experimental results show that the proposed hybrid approach in dual channels can improve recommendation quality. | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 多重通路 | zh_TW |
dc.subject | 協同過濾推薦方法 | zh_TW |
dc.subject | K近鄰 | zh_TW |
dc.subject | Multi-Channel | en_US |
dc.subject | Collaborative Filtering Recommendation | en_US |
dc.subject | KNN | en_US |
dc.title | 雙重通路複合式協同過濾之產品推薦研究 | zh_TW |
dc.title | A Study of Hybrid Collaborative Filtering for Product Recommendation in Dual Channels | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 資訊管理研究所 | zh_TW |
顯示於類別: | 畢業論文 |