Full metadata record
DC FieldValueLanguage
dc.contributor.author林秉旻en_US
dc.contributor.authorPing-Min Linen_US
dc.contributor.author李嘉晃en_US
dc.contributor.authorChia-Hoang Leeen_US
dc.date.accessioned2014-12-12T01:19:51Z-
dc.date.available2014-12-12T01:19:51Z-
dc.date.issued2007en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009557543en_US
dc.identifier.urihttp://hdl.handle.net/11536/39695-
dc.description.abstract監視系統在人機互動( Human Computer Interaction )之領域上為一項重要的研究,在未來社會高齡化的情形將日趨嚴重的同時,隨之而來的看護人力成本將大量上升,因此許多國內外的學者都致力於老人看護監視之研究上,以期輔助現有的人力看護系統,有效的降低龐大的人力支出成本。本研究使用並整合本實驗室所開發之人臉偵測系統用於追蹤人體並得到人體的特徵,利用kNN( k-th Nearest Neighbor )分類法分類人類姿勢並經由實驗統計所得之速度資訊來實作跌倒偵測系統。zh_TW
dc.description.abstractIn the province of Human Computer Interaction, monitor system is an important study. As long as the situation of aging society becomes more and more serious, the care costs will increase plenty. That is the reason so many domestic and foreign scholars throw themselves into the research of elderly care monitor system in order to support the existing care system and reduce the huge expenditures of labor costs. This research used and integrated the human face detection system developed by our laboratory to get the characteristics of the human body and track that. And also used k-th Nearest Neighbor classification to classify the human postures. Then using the information of the changing rate collected by many experiments this research finally can develop a fall detection system.en_US
dc.language.isozh_TWen_US
dc.subject跌倒偵測zh_TW
dc.subject人體輪廓zh_TW
dc.subjectKNN分類器zh_TW
dc.subject老人看護zh_TW
dc.subjectfall detectionen_US
dc.subjectbody contoursen_US
dc.subjectkNN classifieren_US
dc.subjectelderly care monitoren_US
dc.title使用人體輪廓資訊與kNN分類器的即時跌倒偵測系統zh_TW
dc.titleA real-time fall detection system using human body contours information and kNN classifieren_US
dc.typeThesisen_US
dc.contributor.department多媒體工程研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 754301.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.