Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 楊其儒 | en_US |
dc.contributor.author | Yang, Chi-Ru | en_US |
dc.contributor.author | 林松山 | en_US |
dc.contributor.author | Lin, Song-Sun | en_US |
dc.date.accessioned | 2014-12-12T01:22:57Z | - |
dc.date.available | 2014-12-12T01:22:57Z | - |
dc.date.issued | 2009 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079322801 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/40579 | - |
dc.description.abstract | 本論文主要利用幾何觀點,來研究反應擴散方程的進行波解的存在性。在第一個部份,我們介紹幾何奇異擾動的理論方法,並進一步用這種方法來發展某一類FitzHugh-Nagumo type equation的進行波解的多樣性。幾何奇異擾動理論,主要利用不同的時間變數(time scales)把原本的系統分割成慢系統( Slow System )跟快系統( Fast System ),進而減少系統的維度、簡化問題的難度。理論起源應追溯到Fenichel發展的一系列不變流形( Invariant Manifold )理論。Christopher K.R.T. Jones 和 Kopell利用這些理論發展出來的Fenichel coordinate 來追蹤慢流形(Slow Manifold)附近的行為,這是有名的交換引理( Exchange Lemma )。然而,伴隨著轉點( Turning Point )的出現, Weishi Liu 和 Van Vleck 發展出 Fenichel-type coordinate進而證明轉點出現的情況下,方程式的解產生更豐富的動態行為。我們利用這兩種交換引理得到進行波解存在性的充分條件,並且把所有可能存在的進行波波形做一個分類。 自從 Dunbar在1983年開始利用Wazewski Theorem 和 LaSalle Invariance Principle來證明Lotka-Volterra model進行波解的存在,後續不斷有學者把這套理論應用到其他的掠食者模型: Diffusive Holling type II, Holling type III。在第二個部分中,我們試著利用同樣的技巧,做些修改,推廣到更一般的模型中,甚至涵蓋了某種傳染病模型。另外,特別對於非單調系統,這套理論提供了一種很好的工具,讓我們對於非單調系統進行波解的結構可以有更進一步的瞭解。 | zh_TW |
dc.description.abstract | This dissertation investigates the existence of traveling wave solutions in Reaction Diffusion system using geometric approach. The first part of the dissertation applies the geometric singular perturbation to establish the diversity of traveling wave solutions of a FitzHugh-Nagumo type equation with turning point. There coexist different front of traveling wave and we give a complete classification for all of these fronts of traveling waves. The second part of the dissertation applies high-dimensional phase space analysis together with Wazewski Theorem and LaSalle Invariance Principle to prove the existence of the traveling wave solution connecting two equilibria in a general diffusive predator-prey system. The system we considered contains many known model as examples, such diffusive Lotka-Volterra model, diffusive Holling type II, Holling type III and even some SIR model. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 反應擴散方程 | zh_TW |
dc.subject | 進行波 | zh_TW |
dc.subject | 奇異擾動 | zh_TW |
dc.subject | 掠食者模型 | zh_TW |
dc.subject | 轉點 | zh_TW |
dc.subject | 傳染病模型 | zh_TW |
dc.subject | FitzHugh-Nagumo | en_US |
dc.subject | Exchange Lemma | en_US |
dc.subject | geometric singular perturbation | en_US |
dc.subject | Wazewski Theorem | en_US |
dc.subject | LaSalle Invariance Principle | en_US |
dc.subject | predator-prey sys | en_US |
dc.title | 反應擴散方程之進行波解的存在性 | zh_TW |
dc.title | Geometric Approach to the Existence of Traveling Wave Solutions for Reaction Diffusion Systems | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.