標題: | 以超高真空化學汽相沉積系統成長鍺磊晶層於砷化鎵基板於高速電洞元件及互補性氧化金屬半導體之應用及研究 Epitaxial Growth of Germanium on GaAs substrates by UHVCVD for Post P-Channel and CMOS Applications |
作者: | 唐士軒 Tang, Shih Hsuan 張翼 Chang, Yi 材料科學與工程學系 |
關鍵字: | 砷化鎵;鍺;金氧半電容;GaAs;Ge;MOSCAP |
公開日期: | 2012 |
摘要: | 本論文利用超高真空化學汽相沉積系統(UHVCVD)於攝氏600度成長高品質鍺磊晶層於砷化鎵基版上。透過X光繞射分析(HRXRD),穿透式電子顯微鏡(HRTEM)及原子力顯微鏡(AFM)可證明此論文中成長的鍺磊晶層擁有非常好的結晶品質及平坦的表面平整度。 在螢光光譜(PL)的分析中可發現1550奈米波長的訊號,此值是相對於鍺材料直接能隙(0.8eV)的放射光譜,由此可證明成長出來的鍺金屬有非常好的品質,此篇論文也是在砷化鎵基版上成長鍺的討論中第一個測量出螢光光譜的訊號。 除了以上的分析之外,為了更利於之後本材料系統在高速電子遷移率電晶體(HEMT)中的應用,鍺磊晶層及砷化鎵基版接面價電帶能量差(ΔEv)亦經由表面化學電子能譜儀(XPS)測量出,其值為0.16電子伏特。 經由電化學電容電壓量測法(ECV)量測出鍺磊晶層為n 型,且其參雜濃度為1018/cm-3,這是因為在鍺磊晶層沈積於砷化鎵基版上時,成長腔體內的砷(As)會裂解並摻雜入鍺磊晶層中,這也是為何鍺磊晶層在此可測出螢光光譜直接能隙訊號的原因。
在確定了鍺磊晶層在砷化鎵基版上的磊晶品質與特性之後,我們使用了原子層沉積系統在鍺磊晶層上沈積10奈米氧化鋁(Al2O3)當做閘極的氧化層並製作了鍺金氧半電容(MOSCAP)以做進一步研究。在沈積氧化鋁於鍺磊晶層之前,我們在使用了兩種不同的表面處理技術於鍺磊晶層上,以降低鍺磊晶層與氧化鋁介面的接面電荷密度(Dit)。此兩種表面處理技術分別為使用氫氟酸表面處理以及使用氫氟酸表面處理加上快速熱氧化(RTO)處理。而快速熱氧化(RTO)處理的目的是在鍺表面形成一層氧化鍺以降低接面缺陷。在此MOSCAP元件的電容-電壓特性曲線量測(C-V measurement)中,可發現成長出來的鍺磊晶層為P型的,而且所有的元件都擁有絕佳的電容-電壓特性與極低的漏電流。但是在接面電荷密度(Dit)量測中,有經過快速熱氧化(RTO)處理的元件擁有較低的接面電荷密度值,由此可知,在沈積氧化鋁之前先讓鍺磊晶層經過氫氟酸加上快速熱氧化(RTO)處理可有效的改善其接面的品質。
在此論文中,我們也將相同厚度的鍺磊晶層成長在(100), (110)和(111)方向的砷化鎵基版上。我們發現在不同的方向的砷化鎵基版上成長鍺磊晶層的誘導期(Incubation time)與鍺成長速度都不同,這是分別受到了砷化鎵基版表面砷原子跟鎵原子的分佈不同以及在成長過程中氫原子對於對於鍺磊晶層解離能的不同所致。從X光繞射分析(HRXRD),光激發螢光頻譜(PL)與穿透式電子顯微鏡(TEM)的分析中,我們證明不論是成長在那個方向上的砷化鎵基版上,所有的鍺磊晶層都有非常好的結晶性而且擁有極低的缺陷密度。
另外, 由及原子力顯微鏡(AFM)分析中可發現,當鍺磊晶層成長於砷化鎵(100) 和 (111)A基版的時候,其成長是2D成長(Frank-van der Merwe mode),而當鍺磊晶層成長於砷化鎵(110) 基版時,因為受到了鍺跟砷化鎵(110)基版間的表面能的影響,其初期成長模式為3D成長(Volmer-Weber growth mode)。 造成此成長模式的不同是因為在不同方向上,鍺磊晶層以及砷化鎵基版間的表面能差異所致(thermodynamic theory of capillarity)。而當鍺磊晶層於砷化鎵(110) 基版成長厚度超過220nm時,原本的3D島狀結構(於厚度為150nm時)會互相合併而形成非常平坦的鍺磊晶層,此平面的均方根值可達到0.3nm,此平坦度對此結構之後於元件上的應用是非常的有利。在確定了鍺磊晶層表面平整度之後,我們製作了(100)和(110)鍺金氧半電容(MOSCAP)元件以做進一步電性的研究。從電性的量測中,我們證明鍺磊晶層成長於(100)和(110)砷化鎵基版所做成的鍺金氧半元件都擁有絕佳的電容-電壓特性,這代表了在此研究中,鍺磊晶層的品質已經達到可以製作元件的程度。 由於相對於鍺(100)和鍺(111)面,鍺(110) 面擁有最高的電洞遷移率,此研究在之後的鍺金氧半場效電晶體跟砷化鎵基版的整合上提供了一個理想的的示範。
從本論文結果可得知鍺和砷化鎵的異質接面結構可應用於p 型的高速電洞遷移率電晶體(HEMT)及金氧半場效電晶體(MOSFET),甚至可與n型三五族快速電子遷移率電晶體互相整合以利於之後CMOS元件的發展。 High-quality epitaxial Ge films were grown on GaAs substrates by ultra high vacuum chemical vapor deposition (UHVCVD). High crystallinity and smooth surface were observed for these films by X-ray diffraction, transmission electron microscopy and atomic force microscopy. Direct band gap emission (1550nm) from this structure was detected by photoluminescence. Valence band offset of 0.16 eV at the Ge/GaAs interface was measured by XPS. N-type arsenic self-doping of 1018/cm-3 in the grown Ge layers was determined using electrochemical capacitance voltage measurement. Epitaxial germanium metal-oxide-semiconductor capacitors (MOSCAP) were also fabricated on GaAs substrate using atomic layer deposited Al2O3 gate dielectric with surface treatments including pure HF and HF plus rapid thermal oxidation (RTO). The electrical characteristics of 10 nm Al2O3/Ge MOSCAP showed p-type behavior with excellent C-V responses and low leakage current. Interface state density in the order of 1011 eV-1cm-2 was determined from the conductance method and the HF plus RTO treatment exhibits better Al2O3/Ge interface quality than that of pure HF treatment. Epitaxial Ge films were also grown on GaAs (100), (110) and (111) substrates by using ultra-high vacuum chemical vapor deposition and studied with various methods. The incubation times and growth rates were quite different for these three GaAs substrates because the surface arsenic coverage on GaAs and hydrogen desorption energy on Ge are different for each orientation. High-resolution x-ray diffraction measurements, direct band-gap emission of photoluminescence measurements, and cross-sectional transmission electron microscopy showed that the Ge films had high crystal quality, low defect density and sharp Ge/GaAs interfaces. Our atomic force microscopy analysis found that the Ge films grow on GaAs (100) and (111) via the Frank van der Merwe mode, while the Ge film grows on GaAs (110) via the Volmer-Weber mode at the initial growth stage, which can be explained by the thermodynamic theory of capillarity. Interestingly, when the thickness of the Ge film on the GaAs (110) substrate increases to ~ 220 nm, the 3D Ge islands merge and form a smooth surface (rms roughness of 0.3 nm), which is useful for devices. We also fabricated Ge metal-oxide-semiconductor capacitors (MOSCAPs) on GaAs (100) and (110) substrates. Both Ge/GaAs (100) and Ge/GaAs (110) MOSCAPs exhibit good capacitance-voltage responses with strong inversion behaviors, which means the grown material has reached device quality. The Ge/GaAs (110) structure especially offers optimal integration of Ge pMOSFETs on GaAs substrates because Ge (110) has a high hole mobility compared with Ge (100) and (111). |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079418526 http://hdl.handle.net/11536/40784 |
Appears in Collections: | Thesis |