标题: 主链予体受体型共轭高分子之合成与分析及其异质接面太阳能电池之应用
Synthesis and Characterization of Main Chain Donor–Acceptor Conjugated Polymers for Bulk Heterojunction Solar Cell Applications
作者: 陈冠宇
Chen, Guan-Yu
韦光华
Wei, Kung-Hwa
材料科学与工程学系
关键字: 共轭高分子;太阳能电池;solar cell;conjugated polymer
公开日期: 2010
摘要: 本论文主要为发展新型主链予体受体型共轭高分子于异质接面太阳能电池之应用。首先我们合成一具有并双噻吩(cyclopentadithiophene)与吡咯并吡咯二酮(diketo-pyrrolo-pyrrole)基团于主链之共轭高分子,并双噻吩与吡咯并吡咯两者皆具有平面性之结构,因此可增加两者间的分子内电荷传送并延长有效共轭长度,藉此达到低能隙(1.3 eV)之效果。其元件在掺混碳球衍生物后,具有宽广之吸收范围350~1000奈米,有利于吸收较多的光子并产生较高之电流(10.87 mA cm-2)与2.27%之能量转换效率。接着我们成一新的拉电子基团噻二唑/苯并噻二唑 (thiadiazole/benzoimidazole)并与咔唑(carbazole)共轭合成一共轭高分子。此高分子具有一接近太阳能谱最大光通量处之能隙(1.75 eV),且与碳球之间具有适当的最低未填满轨域能阶差,其元件的能量转换效率为1.8%。接着我们藉由多电子基团双噻吩并二噻吩(2,5-di(thiophen-2-yl)thieno[2,3-b]thiophene)与缺电子基团噻吩并双酮吡咯(thieno[3,4-c]pyrrole-4,6-dione)合成一新颖的共轭高分子,由于强拉电子基团噻吩并双酮吡咯之存在,使得此高分子具有高结晶特性与低的最高填满分子轨域能阶,其太阳能电池元件可获得开路电压为0.85 V与高能量转换效率为5.1%。最后我们进一步将此缺电子基团噻吩并双酮吡咯与多电子基团噻吩合成一系列高分子,这些高分子亦具有结晶特性与低的最高填满分子轨域能阶。具有己烷-噻吩与噻吩并双酮吡咯之共轭高分子,在制成太阳能电池元件后,其具有高开路电压为0.96 V与能量转换效率为2.6%。
The objective of this thesis is to develop new main chain donor (D)-acceptor (A) conjugated polymers for bulk heterojuncttion (BHJ) solar cells. First of all, We have synthesized a narrow-bandgap conjugated polymer (PCTDPP) containing alternating cyclopentadithiophene (CT) and diketo-pyrrolo-pyrrole (DPP) units by Suzuki coupling. This PCTDPP exhibits a low band gap of 1.31 eV and a broad absorption band from 350 to 1000 nm, which allows it to absorb more available photons from sunlight. A bulk heterojunction polymer solar cell incorporating PCTDPP and C70 at a blend ratio of 1:3 exhibited a high short-circuit current (Jsc) of 10.87 mA cm–2 and a power conversion efficiency (PCE) of 2.27%. Second, we synthesized a new polymer, PCTDBI, containing alternating carbazole and thiadiazole-benzoimidazole (TDBI) units. This polymer which features a planar imidazole structure into the polymeric main chain, possesses reasonably good thermal properties and an optical band gap of 1.75 eV that matches the maximum photon flux of sunlight. Electrochemical measurements revealed an appropriate energy band offset between the lowest unoccupied molecular orbital energy level of polymer and that of PCBM, thereby allowing efficient electron transfer between the two species. A solar cell device incorporating PCTDBI and PC71BM (1:2, w/w) exhibited a PCE of 1.84%. Third, we prepared a new donor-acceptor polymer, PDTTTPD, through conjugating the electron-rich 2,5-di(thiophen-2-yl)thieno[2,3-b]thiophene (DTT) and electron-deficient thieno[3,4-c]pyrrole-4,6-dione (TPD) acceptor. PDTTTPD exhibited high crystallinity and low-lying HOMO energy level due to presence of strongly electron-withdrawing TPD units. A device incorporating PDTTTPD/PC71BM with DIO (1 vol%) as an additive, exhibited open-circuit voltage (Voc) of 0.85V and PCE of 5.1%. Finally, we synthesized two new crystalline polymers (PT6TPD and PT8TPD) containing alternating thiophene and thieno[3,4-c]pyrrole-4,6-dione (TPD) units by Stille cross-couling copolymerization. Both polymers possess excellent thermal stability, crystallinity, and low-lying HOMO energy level because of presence of rigid and planar electron withdrawing units (TPD) in polymeric backbone. A device incorporating the PT6TPD:PC71BM blend (1:1, w/w) exhibit high Voc of 0.96 V and PCE of 2.6%.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079418827
http://hdl.handle.net/11536/40796
显示于类别:Thesis