完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 蕭雯華 | en_US |
dc.contributor.author | Hsiao, Wen-Hua | en_US |
dc.contributor.author | 翁志文 | en_US |
dc.contributor.author | Weng, Chih-Wen | en_US |
dc.date.accessioned | 2014-12-12T01:23:45Z | - |
dc.date.available | 2014-12-12T01:23:45Z | - |
dc.date.issued | 2010 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079422522 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/40823 | - |
dc.description.abstract | 群試設計(group testing)為應用數學的一個分支,其應用層面包含了錯誤更正碼、基因(DNA)測試等。本論文著重在探討t x (t+1) d-可分離群式設計的可能性。首先我們考慮投影平面的點線關係矩陣,並證明刪除任一列可以產生t x (t+1) d-可分離群矩陣,當t等於d^2+d且d為質數的次方。接著我們證明當t小於d^2+d且d為2或3時並不存在d-可分離群矩陣。 | zh_TW |
dc.description.abstract | Group testing is a branch of applied mathematics and has several applications, such as error correcting codes, DNA testing, etc. This thesis investigates the existence of a t x (t+1) d-separable matrix for some t and d. First, we consider the point-block incidence matrix of the projective plane of order d and show that removing any row from the matrix yields a t x (t+1) d-separable matrix as t=d^2+d and d is a prime power. Then, we show that if t<d^2+d and d=2 or 3, there is no t x (t+1) d-separable matrix. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 群式設計 | zh_TW |
dc.subject | 可分離矩陣 | zh_TW |
dc.subject | 有限投影平面 | zh_TW |
dc.subject | group testing | en_US |
dc.subject | separable matrix | en_US |
dc.subject | finite projective plane | en_US |
dc.title | t x (t+1) d-可分離矩陣的最小t值: d=2或3的情況 | zh_TW |
dc.title | The minimum value of t for t x (t+1) d-separable matrix: d=2 or 3 | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |