完整後設資料紀錄
DC 欄位語言
dc.contributor.author蕭雯華en_US
dc.contributor.authorHsiao, Wen-Huaen_US
dc.contributor.author翁志文en_US
dc.contributor.authorWeng, Chih-Wenen_US
dc.date.accessioned2014-12-12T01:23:45Z-
dc.date.available2014-12-12T01:23:45Z-
dc.date.issued2010en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079422522en_US
dc.identifier.urihttp://hdl.handle.net/11536/40823-
dc.description.abstract群試設計(group testing)為應用數學的一個分支,其應用層面包含了錯誤更正碼、基因(DNA)測試等。本論文著重在探討t x (t+1) d-可分離群式設計的可能性。首先我們考慮投影平面的點線關係矩陣,並證明刪除任一列可以產生t x (t+1) d-可分離群矩陣,當t等於d^2+d且d為質數的次方。接著我們證明當t小於d^2+d且d為2或3時並不存在d-可分離群矩陣。zh_TW
dc.description.abstractGroup testing is a branch of applied mathematics and has several applications, such as error correcting codes, DNA testing, etc. This thesis investigates the existence of a t x (t+1) d-separable matrix for some t and d. First, we consider the point-block incidence matrix of the projective plane of order d and show that removing any row from the matrix yields a t x (t+1) d-separable matrix as t=d^2+d and d is a prime power. Then, we show that if t<d^2+d and d=2 or 3, there is no t x (t+1) d-separable matrix.en_US
dc.language.isoen_USen_US
dc.subject群式設計zh_TW
dc.subject可分離矩陣zh_TW
dc.subject有限投影平面zh_TW
dc.subjectgroup testingen_US
dc.subjectseparable matrixen_US
dc.subjectfinite projective planeen_US
dc.titlet x (t+1) d-可分離矩陣的最小t值: d=2或3的情況zh_TW
dc.titleThe minimum value of t for t x (t+1) d-separable matrix: d=2 or 3en_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文