标题: 掺杂硝基苯胺与聚方酸菁高分子于以PQ为光敏感剂之感光高分子材料在体积全像资讯储存上之特性研究
Effect of Co-doping Notroaniline Compounds and Polysquaraine on Volume Holographic Data Storage Characteristics of Phenanthrenequinone-doped Photopolymers
作者: 柯政荣
Ko, Cheng-Jung
黄华宗
Whang, Wha-Tzong
材料科学与工程学系
关键字: 硝基苯胺;全像储存;聚方酸菁;菲醌;动态范围;双折射;Nitroaniline;Holographic data storage;Polysquaraine;Phenanthrenequinone;Dynamic range;Birefringence
公开日期: 2012
摘要: 本论文主要的研究方向,主要在改善以Phenanthrenequinone (PQ)为光敏感剂的感光高分子材料在全像资讯储存的特性表现,期望能研发出具有更佳全像记录特性及反应性的材料。在本论文中首先将不同结构之硝基苯胺(nitroaniline),如: N,N-dimethyl-4-nitroaniline (DMNA), N-methyl-4-nitroaniline (MNA)和 4-nitroaniline (pNA),掺入PMMA/PQ的感光高分子中,并且利用波长为532nm之雷射,量测绕射效率(Diffraction efficiency)与动态储存范围(M#)等不同的光学实验,探讨所制备之材料在全像记录上的特性。在结果中发现掺入硝基苯胺(nitroaniline)之感光高分子材料的绕射效率与动态储存范围皆有显着的提升,其中以掺入DMNA之样品的绕射效率可从38%提升至71%,而动态储存范围从2.7提升至7.3。为了瞭解掺入硝基苯胺之感光高分子的记录机制,利用紫外光-可见光谱仪(UV-Vis)的吸收光谱、红外线光谱仪(FTIR)、核磁共振光谱仪(NMR spectra)与X射线光电子能谱(XPS)等仪器分析。并从结果中发现了,DMNA在感光高分子照光记录时并不会与PQ或残余的MMA单体产生光化学反应,其记录机制是PQ与残余的MMA单体进行光化学反应时,因PQ的极化行为改变,而使DMNA的顺向性产生了变化,而提升了感光高分子双折射,使全像记录的特性有显着的改善。
第二部分主要是延续第一部分的研究成果,将DMNA与zinc methylacrylate (Zn(MA)2)同时掺入以PMMA/PQ的感光高分子中。利用Zn(MA)2会和DMNA分子反应,形成新的化合物,造成材料的双折射有显着的变化,而使全像记录的特性有所提升。在514nm雷射的量测下,当同时掺入DMNA与Zn(MA)2时,其绕射效率会从原本PMMA/PQ的36.1%提升至86.2%。另外在动态储存范围的量测结果中发现,掺入DMNA与Zn(MA)2时M#也从原本的2.9提升至10.7。并利用质谱仪(Mass)与X射线光电子能谱(XPS)等仪器分析,分析感光高分子的记录机制。
由第一部分和第二部分的结果发现,三级胺结构的硝基苯胺(para-Nitro-tertiary-anilines; (p-nitro-t-anilines))掺入PMMA/PQ感光高分子中,可改善感光高分子的双折射,进而提升材料的全像记录特性。因此,在第三部分选用了不同三级胺结构的硝基苯胺分子:N,N-dimethyl-4-nitroaniline (DMNA), N,N-Diethyl-4-nitroaniline (DENA), and N-Cyanomethyl-N-methyl-4-nitroaniline (CMMNA)掺入PMMA/PQ感光高分子中,针对全像记录做一系列的研究。在研究中发现,掺入CMMNA分子的材料具有较高的双折射,并且在绕射效率的量测中发现,掺有CMMNA分子的材料绕射效率会从原本的36.1%提升至81.9%。
最后,我们利用3-octylpyrrole和squaric acid合成了同时具有推电子基团(electron donor)与拉电子基团(electron acceptor)结构的聚芳酸菁(poly (3-octylpyrrole-co-squaric acid); PSQ3)分子,并尝试将PSQ3分子导入PMMA/PQ感光高分子中,希望能改善材料的于全像储存的特性。利用所制备的感光高分子薄膜进行了绕射效率(Diffraction efficiency)与动态储存范围(M#)的量测,在结果中发现,加入含有PSQ3分子的感光高分子的绕射效率可从9.0%提升至54.8% (提升约6.1倍),而动态储存范围从0.46提升至1.05 (增加约2.2倍之多),由此结果指出掺杂PSQ3分子对于全像特性的改善有其效果。
This study describes an approach toward improving the characteristics of a photopolymer for holographic data storage application. First of all, the diffraction efficiency (ηmax) and dynamic range (M#) of 9,10-phenanthrenequinone (PQ)–doped poly(methyl methacrylate) (PMMA) both improved significantly after co-doping with one of three nitroanilines—N,N-dimethyl-4-nitroaniline (DMNA), N-methyl-4-nitroaniline (MNA), and 4-nitroaniline (pNA). In particular, the value of ηmax increased from 38% for the PMMA/PQ system to 71% for the PMMA/PQ/DMNA system (a 1.89-fold improvement) and the value of M# increased accordingly from 2.7 to 7.3 (a 2.70-fold improvement). Thus, the holographic data storage characteristics of PMMA/PQ photopolymers can be improved through co-doping with nitroaniline compounds. We also investigated the mechanism of the nitroaniline-induced improvement in optical storage performance using proton nuclear magnetic resonance and X-ray photoelectron spectroscopy.
In second part, through co-doping different compounds, N,N-dimethyl-4-nitroaniline (DMNA) and zinc methylacrylate (Zn(MA)2), into 9,10-phenanthrenequinone (PQ) doped poly(methyl methacrylate) (PMMA), the diffraction efficiency and the value of dynamic range (M#) have been progressed. We enhanced the diffraction efficiency (from 36.1 to 86.2%) and the dynamic range (M#, from 2.9 to 10.7) of 9,10-phenanthrenequinone (PQ)-doped poly(methyl methacrylate) (PMMA) through co-doping with N,N-dimethyl-4-nitroaniline (DMNA) and zinc methacrylate [Zn(MA)2]. Using mass spectrometry and X-ray photoelectron spectroscopy, we investigated the mechanism behind the improvements in optical storage induced by the presence of Zn(MA)2 and DMNA in PMMA/PQ.
Next, three different para-Nitro-tertiary-anilines (p-nitro-t-anilines), N,N-dimethyl-4-nitroaniline (DMNA), N,N-Diethyl-4-nitroaniline (DENA), and N-Cyanomethyl-N-methyl-4-nitroaniline (CMMNA), co-doped with phenanthrenequinone (PQ) into poly (methyl methacrylate) (PMMA) significantly improved the holographic characteristics of the photopolymers to different degrees. These three co-dopants differed in their N-substituents only, which in turn changed the birefringence of the molecules. The samples with DMNA, DENA, and CMMNA increased their maximum diffraction efficiencies from 36.1 to 60.3, 69.6, and 81.9%, respectively. The CMMNA-doped sample demonstrated the best performance and highest birefringence in the recording process. The enhancement in maximum diffraction efficiency of the sample with CMMNA was up to 124%. The improvement in holographic recording characteristics paralleled the birefringence in the exposed photopolymers.
Finally, we synthesized poly(3-octylpyrrole-co-squaric acid) (PSQ3), a polysquaraine, through the reaction of 3-octylpyrrole and squaric acid, and then co-doped it with phenanthrenequinone (PQ) into poly(methyl methacrylate) (PMMA) to improve the holographic data storage characteristics of the photopolymer. The photopolymers co-doped with relatively small amounts of PSQ3 exhibited greatly improved holographic recording characteristics, including superior diffraction efficiency and dynamic range (M#). Among the samples co-doped with PQ and PSQ3, the maximum diffraction efficiency reached 54.8% (cf. 9.0% for PMMA/PQ) without further downgrade and the value of M# reached 1.05 (cf. 0.46 for PMMA/PQ). Therefore, the holographic data storage characteristics of the photopolymer PMMA/PQ were improved through co-doping with PSQ3.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079518828
http://hdl.handle.net/11536/41166
显示于类别:Thesis