完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTAN, JJMen_US
dc.date.accessioned2014-12-08T15:05:40Z-
dc.date.available2014-12-08T15:05:40Z-
dc.date.issued1990en_US
dc.identifier.issn0006-3835en_US
dc.identifier.urihttp://hdl.handle.net/11536/4210-
dc.identifier.urihttp://dx.doi.org/10.1007/BF01933211en_US
dc.description.abstractThe stable roommates problem is that of matching n people into n/2 disjoint pairs so that no two persons, who are not paired together, both prefer each other to their respective mates under the matching. Such a matching is called "a complete stable matching". It is known that a complete stable matching may not exist. Irving proposed an O(n2) algorithm that would find one complete stable matching if there is one, or would report that none exists. Since there may not exist any complete stable matching, it is natural to consider the problem of finding a maximum stable matching, i.e., a maximum number of disjoint pairs of persons such that these pairs are stable among themselves. In this paper, we present an O(n2) algorithm, which is a modified version of Irving's algorithm, that finds a maximum stable matching.en_US
dc.language.isoen_USen_US
dc.subjectSTABLE ROOMMATES PROBLEMen_US
dc.subjectSTABLE MATCHINGen_US
dc.subjectMAXIMUM STABLE MATCHINGen_US
dc.subjectALGORITHMSen_US
dc.titleA MAXIMUM STABLE MATCHING FOR THE ROOMMATES PROBLEMen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/BF01933211en_US
dc.identifier.journalBITen_US
dc.citation.volume30en_US
dc.citation.issue4en_US
dc.citation.spage631en_US
dc.citation.epage640en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1990EX83000006-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. A1990EX83000006.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。