完整後設資料紀錄
DC 欄位語言
dc.contributor.author林詒琪en_US
dc.contributor.authorLin, Yi-Chien_US
dc.contributor.author翁志文en_US
dc.contributor.authorWeng, Chih-Wenen_US
dc.date.accessioned2015-11-26T01:06:25Z-
dc.date.available2015-11-26T01:06:25Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079622528en_US
dc.identifier.urihttp://hdl.handle.net/11536/42515-
dc.description.abstract對一t-(v,k,λ)區族設計D=(X,B)而言,其VC維度定義為X 中滿足下列條件的子集A: 每一個A 的子集合C 都存在一個在區族集B中的區族B,使得 C=A∩B。在這篇論文我們探討t-(v,k,λ) 區族設計的VC維度的基本性質,並且運用他們完整的決定當 λ = 1 且t = 2 和t = 3 時,這兩類區族設計的VC維度。zh_TW
dc.description.abstractThe Vapnik-Chervonenkis dimension of a t-(v,k,λ) design D =(X, B) is the largest cardinality of a subset A of X such that for each subset C there exists a block Β∈B such that C=A∩B. In this thesis we give some general properties of the Vapnik-Chervonenkis dimension of a t-(v,k,λ) design, and use them to completely determine the Vapnik-Chervonenkis dimension of a t-(v,k,1) design for t = 2 and t = 3.en_US
dc.language.isoen_USen_US
dc.subjectVC 維度zh_TW
dc.subject區族設計zh_TW
dc.subjectVC dimensionen_US
dc.subjectblock designen_US
dc.title設計的VC維度zh_TW
dc.titleThe VC dimension of block designen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 252801.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。