Full metadata record
DC FieldValueLanguage
dc.contributor.author葉彬en_US
dc.contributor.authorYeh, Binen_US
dc.contributor.author翁志文en_US
dc.contributor.authorWeng, Chih-Wenen_US
dc.date.accessioned2014-12-12T01:30:22Z-
dc.date.available2014-12-12T01:30:22Z-
dc.date.issued2009en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079622534en_US
dc.identifier.urihttp://hdl.handle.net/11536/42518-
dc.description.abstract在半正定規劃的問題中,我們要求一些對稱矩陣的彷射組合必須是半正定,在這樣的限制下試圖將目標線性函數最小化。這些限制未必是線性,但它們具有中凸的性質故半正定規劃是一種中凸規劃。在這篇論文中我們探討了一些半正定規劃的基本性質與基礎理論並給出證明。zh_TW
dc.description.abstractIn semidefinite programming problems one minimizes a linear function subject to some constraints which requires an affine combination of symmetric matrices to be positive semidefinite. The constraints may not be linear but it is convex so semidefinite programming problems are convex optimization problems. In this paper we give some basic properties and fundamental theorems with their proofs regrading semidefinite programming problems.en_US
dc.language.isoen_USen_US
dc.subject半正定zh_TW
dc.subjectsemidefiniteen_US
dc.title半正定規劃zh_TW
dc.titleSemidefinite Programming Problemsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 253401.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.