Full metadata record
DC FieldValueLanguage
dc.contributor.author黃依賢en_US
dc.contributor.authorHuang, E-Hsienen_US
dc.contributor.author王秀瑛en_US
dc.contributor.authorWang, Hsiu-Yingen_US
dc.date.accessioned2014-12-12T01:30:56Z-
dc.date.available2014-12-12T01:30:56Z-
dc.date.issued2008en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079626521en_US
dc.identifier.urihttp://hdl.handle.net/11536/42682-
dc.description.abstract近代聲音辨識系統普遍建立在Gaussian mixture model 或Hidden Markov Model.最大概似法事最常被用來估計這些模型,而另一種估計法則是採用貝氏估計,在本研究中,我們想設計一個結合貝氏估計與最大概似估計的新方法來提升採用Gaussian mixture model的聲音辨識效果。.zh_TW
dc.description.abstractModern speech recognition systems are generally based on the Gaussian mixture model or Hidden Markov Model. The maximum likelihood method is a popular approach to derive the parameter estimation in these models. An alternative solution is to adopt the Bayes approach for the parameter estimation. In this study, we propose a new method which can combine the results of the maximum likelihood and Bayes approaches to provide more accurate estimators in the Gaussian mixture model for audio signal recognition.en_US
dc.language.isoen_USen_US
dc.subject貝氏估計zh_TW
dc.subject最大概似估計zh_TW
dc.subject音訊辨識zh_TW
dc.subject高斯混合模型zh_TW
dc.subjectbayes estimateen_US
dc.subjectmaximum likelihood methoden_US
dc.subjectaudio signal recognitionen_US
dc.subjectgaussian mixture modelen_US
dc.title結合貝氏估計法的修正最大概似法在語音辨識的應用zh_TW
dc.titleMaximum Likelihood Method Associated with the Bayes Approach in Audio Signal Recognitionen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis