Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 黃依賢 | en_US |
dc.contributor.author | Huang, E-Hsien | en_US |
dc.contributor.author | 王秀瑛 | en_US |
dc.contributor.author | Wang, Hsiu-Ying | en_US |
dc.date.accessioned | 2014-12-12T01:30:56Z | - |
dc.date.available | 2014-12-12T01:30:56Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079626521 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/42682 | - |
dc.description.abstract | 近代聲音辨識系統普遍建立在Gaussian mixture model 或Hidden Markov Model.最大概似法事最常被用來估計這些模型,而另一種估計法則是採用貝氏估計,在本研究中,我們想設計一個結合貝氏估計與最大概似估計的新方法來提升採用Gaussian mixture model的聲音辨識效果。. | zh_TW |
dc.description.abstract | Modern speech recognition systems are generally based on the Gaussian mixture model or Hidden Markov Model. The maximum likelihood method is a popular approach to derive the parameter estimation in these models. An alternative solution is to adopt the Bayes approach for the parameter estimation. In this study, we propose a new method which can combine the results of the maximum likelihood and Bayes approaches to provide more accurate estimators in the Gaussian mixture model for audio signal recognition. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 貝氏估計 | zh_TW |
dc.subject | 最大概似估計 | zh_TW |
dc.subject | 音訊辨識 | zh_TW |
dc.subject | 高斯混合模型 | zh_TW |
dc.subject | bayes estimate | en_US |
dc.subject | maximum likelihood method | en_US |
dc.subject | audio signal recognition | en_US |
dc.subject | gaussian mixture model | en_US |
dc.title | 結合貝氏估計法的修正最大概似法在語音辨識的應用 | zh_TW |
dc.title | Maximum Likelihood Method Associated with the Bayes Approach in Audio Signal Recognition | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 統計學研究所 | zh_TW |
Appears in Collections: | Thesis |