Full metadata record
DC FieldValueLanguage
dc.contributor.author林吟玲en_US
dc.contributor.authorLin Yin-Lingen_US
dc.contributor.author黃冠華en_US
dc.contributor.authorHuang Guan-Huaen_US
dc.date.accessioned2014-12-12T01:41:07Z-
dc.date.available2014-12-12T01:41:07Z-
dc.date.issued2009en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079726509en_US
dc.identifier.urihttp://hdl.handle.net/11536/45239-
dc.description.abstract本論文主要目的是對k-means分群方法估計潛在群體的計算過程作平行運算,透過OpenMP與MPI平行運算,將updated k-means與non-updated k-means兩種不同k-means分群方法作平行,使得程式計算時間縮短,並且在個人電腦、國家高速電腦中心與Amazon EC2三種不同電腦環境上運作,觀測他們的平行效率。除此之外,利用乳癌的微陣列為例,作更詳細的說明。在乳癌資料的例子中,兩種k-means分群方法都達到縮短運算時間的效果!zh_TW
dc.description.abstractThe main purpose of the study is to perform parallel computing for k-means clustering on estimating the underlying latent class process. OpenMP and MPI parallel computing make computing time shorter for updated and non-updated k-means clustering method. We compare the parallel efficiency of OpenMP and MPI in the personal computers, the national center for high-performance computing and the Amazon EC2 environment. Besides, the breast cancer microarray data are used for illustration. The results display that parallel computing can reduce the computation time in all three computing environments.en_US
dc.language.isozh_TWen_US
dc.subjectOpenMPzh_TW
dc.subjectMPIzh_TW
dc.subject平行運算zh_TW
dc.subjectOpenMPen_US
dc.subjectMPIen_US
dc.subjectParallel Cmputingen_US
dc.title對K均值分群估計潛在群體程序作平行運算zh_TW
dc.titleParallel Computing for K-means Clustering on Estimating Underlying Latent Classesen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 650901.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.