完整後設資料紀錄
DC 欄位語言
dc.contributor.author洪寧en_US
dc.contributor.authorHung, Ningen_US
dc.contributor.author黃國華en_US
dc.contributor.authorHuang, Guewha Stevenen_US
dc.date.accessioned2014-12-12T01:43:13Z-
dc.date.available2014-12-12T01:43:13Z-
dc.date.issued2009en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079752514en_US
dc.identifier.urihttp://hdl.handle.net/11536/45839-
dc.description.abstract近年來,零維奈米團簇在電子、光電、和感測器領域已眾所矚目的發展許多有潛力的應用。零維奈米材料代表三維尺度都受限於奈米大小,其涵蓋的範圍有奈米粉體、奈米團簇、奈米顆粒以及量子點等,而其形態又可多分為圓形、橢圓形、三角形、針狀、管狀等。許多文獻已闡明零維奈米材料從奈米級組裝排列至微米級的方法。相對的,在一維奈米結構組裝排列,像是奈米線和奈米碳管,這些一維奈米材料僅只有一個維度不受限於奈米大小影響,儘管和零維奈米顆粒一樣,都提供具有潛力的基礎建構材料,目前卻都使用耗時、耗成本和繁雜的組裝排列技術,像是利用電操控、磁操控或是微流道操控的技術。奈米級的操控是一門新興的研究領域,目前已如火如荼的展開研究,並且將會是奈米元件在由下而上製程中很具有優勢的技術。在此篇論文研究中,發現因材料移動等向性的關係,簡單的混合和離心不能直接使奈米線進入奈米孔洞中。然而,利用生物專一性的原理,將奈米金施打至老鼠體內去引發免疫反應。老鼠在施打幾周後,開始採集尾巴血液,離心純化血清,即可收集得到奈米金抗體。接著,在預先沉積奈米金至奈米孔洞中,並且使奈米線上表面修飾奈米金抗體,然後施加離心力輔助下,抗體和抗原的生物專一性可以使奈米線傾向朝著奈米孔洞移動,而離心力輔助可作為奈米線進入奈米孔洞的驅動力。前處理過後的奈米線和奈米孔洞提升5.5%的插洞率,同時,也發現插洞率的提升主要和奈米金數量、抗體濃度成正比。奈米線插洞的深度則和所施加的離心力有相對應的關係存在。更進一步地,提出一維奈米線在抗體抗原專一性辨識及離心力的輔助下,如何一步一步進入奈米孔洞的機制。zh_TW
dc.description.abstractRecent interest in zero-dimensional nanoclusters has led to potential applications in electronics, optoelectronics, photonics and sensors. Several methods have demonstrated significant strides in the assembly of arrays with order extending from nanometer to micrometer length scales. In contrast, the assembly of one-dimensional nanostructures, such as NWs and carbon nanotubes, has been using costly and time-consuming techniques, such as electric-field assisted assembly, hierarchical magnetic assembly, and microfluid flows alignment, although these materials offer great potential as building blocks for applications same as zero-dimensional nanoclusters in nanoelectronics and photonics. Manipulation of objects at the nanoscale is a novel topic of research and will be a beneficial technique in the bottom-up fabrication of nanodevices. Simple mixing and centrifugation cannot direct nanowires into pores due to the isotropic properties these nanowires. However, the insertion process was greatly improved by pre-depositing gold nanoparticles (GNPs) into the nanopores, attaching anti-GNP antibodies to the nanowires, and then applying gravitational force by centrifugation. Up to 5.5 percent of nanopores were filled by the modified nanowires. The percentage of insertion was proportional to the amount of GNP and the concentration of the anti-GNP antibody. The depth of insertion achieved here correlated with the applied gravitational force. A step-by-step mechanism is proposed.en_US
dc.language.isoen_USen_US
dc.subject生物操控, 奈米金, 抗體, 奈米線, 奈米孔洞zh_TW
dc.subjectBiomanipulaiton, gold nanoparticle, antibody, nanowire, nanoporeen_US
dc.title奈米級生物操控技術以抗體引導奈米線進入奈米孔洞zh_TW
dc.titleNanoscale Biomanipulation Antibody-guided Wire into Poreen_US
dc.typeThesisen_US
dc.contributor.department材料科學與工程學系奈米科技碩博士班zh_TW
顯示於類別:畢業論文