标题: 以内容为基础的建筑物影像检索
Content-Based Building Image Retrieval
作者: 黄启铭
Huang, Chi-Ming
陈稔
Chen, Zen
资讯科学与工程研究所
关键字: 建筑物影像检索;影像特征撷取;影像特征描述;交通大学建筑物;影像辨识;building image retrieval;MSER;Zernike Moment;kd-tree;ZuBud
公开日期: 2009
摘要: 本论文目的在使用影像区域特征来建立一个建筑物影像检索系统。此检索系统分成资料库与查询两个部份,资料库部份按照处理顺序又可分为三个步骤,第一步骤使用可抗视角变化的Maximally Stable Extremal Region做特征区域撷取;第二步骤使用旋转不变的phased-based Zernike Moment做特征区域描述;第三步骤使用kd-tree建立特征向量的索引。建立资料库时,使用同一栋建筑物相邻的影像特征互相比对,去除不稳定出现的特征区域,并使用Density-Based Spatial Clustering of Applications with Noise分群法,以减少资料库中存在的储存重覆特征问题。查询部分采用kd-tree找最近点与邻近点的便利性,以直观的投票机制找出资料库中与查询影像最相似的建筑物。
The goal of this thesis research is to construct a building image indexing and retrieval system. This system consists of two parts: the database organization (indexing) and the query part (retrieval). The database part is further composed of three modules. In the first module, view-invariant feature detection, Maximally Stable Extremal Region (MSER), is used to extract the regions of interest. In the second module, the phased-based Zernike Moment is used to describe the regions. In the third module, a kd-tree structure is used to establish the index of Zernike Moment feature vectors. When constructing the database, in order to eliminate the unstable regions, a trick of comparison of the features extracted from the neighboring views of the same building is used. To reduce the problem of redundancy, the clustering algorithm, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), is used. In the query part, the kd-tree provides a convenient way to find the nearest neighbor. And then an intuitive voting mechanism is used to find the building from the database which is most similar to the query image.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079755608
http://hdl.handle.net/11536/45955
显示于类别:Thesis


文件中的档案:

  1. 560801.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.