Full metadata record
DC FieldValueLanguage
dc.contributor.author陳俊良en_US
dc.contributor.authorChun-Liang Chenen_US
dc.contributor.author陳信宏en_US
dc.contributor.authorSin-Horng Chenen_US
dc.date.accessioned2014-12-12T01:44:52Z-
dc.date.available2014-12-12T01:44:52Z-
dc.date.issued2003en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009113544en_US
dc.identifier.urihttp://hdl.handle.net/11536/46312-
dc.description.abstract廣播新聞在現代生活裡非常普遍,結合語音辨識的技術可以應用在許多領域上。在本論文中,我們專注於廣播新聞語音辨識,首先針對廣播新聞類似自發性語音的特性,說明如何建立聲學模型,並且根據內外場環境的不同各自訓練模型,可以提高辨識效能。接著還會說明語言模型的建立,如何將一個語言模型調整成適合廣播新聞,並且使用語言模型調適的技術可以使得語言模型優化,最後的音節辨識率與基本辨識系統相比,內場可提升約16%、外場可提升20%以上。而廣播新聞的資料來源是採用中研院錄製的公視新聞資料庫(PTSND),我們也會在論文中對資料庫內容做簡介說明。zh_TW
dc.description.abstractBroadcast news is very general in this day, many researches were applied by combining speech recognition technique. In the thesis, we focus on the Mandarin broadcast news speech recognition, because of the spontaneous speech characteristics, several spontaneous acoustic models were constructed, and individual model training were performed under different environments. Then, the language model construction will be described carefully. Performance will be improved by using the language model adaptation. At last, the syllable recognition rate was increased about 16% for anchor. Above 20% increase was obtained for reporter and interviewee. All related experiments proceeded over the broadcast news database:PTSND. Database content will also be introduced in this paper.en_US
dc.language.isozh_TWen_US
dc.subject廣播新聞zh_TW
dc.subject語言模型zh_TW
dc.subject語言模型調適zh_TW
dc.subject內外場zh_TW
dc.subject廣播新聞語音辨識zh_TW
dc.subject外場受訪者zh_TW
dc.subjectPTSNDen_US
dc.subjectBroadcast newsen_US
dc.subjectspontaneous speechen_US
dc.subjectLanguage Modelen_US
dc.subjectLanguage Model adaptationen_US
dc.subjectenvironment-dependent modelen_US
dc.title國語廣播新聞語音辨識之研究zh_TW
dc.titleA Study of Mandarin Broadcast News Speech Recognitionen_US
dc.typeThesisen_US
dc.contributor.department電信工程研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 354401.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.