Full metadata record
DC FieldValueLanguage
dc.contributor.author林志翰en_US
dc.contributor.authorLin, Chih-Hanen_US
dc.contributor.author黃志方en_US
dc.contributor.author曾毓忠en_US
dc.contributor.authorHuang, Chih-Fangen_US
dc.contributor.authorTseng, Yu-Chungen_US
dc.date.accessioned2014-12-12T01:45:54Z-
dc.date.available2014-12-12T01:45:54Z-
dc.date.issued2011en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079802503en_US
dc.identifier.urihttp://hdl.handle.net/11536/46615-
dc.description.abstract在目前行動裝置與網路快速發展下,線上音樂產業逐漸被重視,該如何從 大量的音樂中挑選出適合使用者的音樂,變成相當重要的一項議題,因此有效 且彈性的音樂資訊檢索系統,是值得研究的一個方向。 在本篇論文中,主要以音訊內容為基礎的音樂資訊檢索為研究目標,針對 音樂風格和音樂情緒進行分析研究。研究的部份包含響度、音調、音高、音色 和節奏五大類的音樂特徵進行分析,同時也探討如何建構音樂情緒模型。在針 對分類方法上,我們使用三種機器學習(SVM、k-NN 和 LDA)的方法交叉分析 並比對各種方式以取得最好的音樂風格分類成效,經過 10 層交叉驗證得到 82% 的辨識率,而音樂情緒則使用 SVR 建構情緒模型。最後一部份,我們試 圖整合訓練完成的音樂資料模型,並實作出一套音樂資訊檢索系統雛形 - MuZhi。zh_TW
dc.description.abstractDue to the development of the Internet and smartphone, online music market becomes more and more popular. There’s over millions digital music on the Internet. In order to organize the huge amount of music, an efficient and intelligent music information retrieval system (MIR) is a way to solve this problem. In this thesis, we focus on the content-based music information retrieval system and analyze each music genre and emotion. More specifically, we study some audio feature sets for five difference music characters (Loudness, Tonality, Pitch, Timbre and Rhythm) and music emotion models. The music genre classification approaches described are based on three difference statistical pattern recognition classifiers (SVM, k-NN and LDA). To building the music emotion model are based on SVR. In the result, we implemented a prototype music information retrieval system – MuZhi, which integrate our works of trained music models.en_US
dc.language.isozh_TWen_US
dc.subject音樂資訊檢索zh_TW
dc.subject風格分類zh_TW
dc.subject音樂情緒zh_TW
dc.subject聲音特徵zh_TW
dc.subjectMusic Information Retrievalen_US
dc.subjectGenre Classificationen_US
dc.subjectMusic Emotionen_US
dc.subjectAudio Featuresen_US
dc.title基於音樂風格及情緒之內容式音樂資訊檢索系統zh_TW
dc.titleThe Content-based Music Information Retrieval System Based on Music Genre and Emotionen_US
dc.typeThesisen_US
dc.contributor.department工學院聲音與音樂創意科技碩士學位學程zh_TW
Appears in Collections:Thesis