Full metadata record
DC FieldValueLanguage
dc.contributor.author吳偉廷en_US
dc.contributor.authorWu, Wei-tingen_US
dc.contributor.author鄭泗東en_US
dc.contributor.authorCheng, Stoneen_US
dc.date.accessioned2014-12-12T01:45:54Z-
dc.date.available2014-12-12T01:45:54Z-
dc.date.issued2010en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079802512en_US
dc.identifier.urihttp://hdl.handle.net/11536/46621-
dc.description.abstract人們的情緒隨著聆聽音樂的過程被牽動,以往音樂情緒檢索系統多半提出單一情緒分類。本研究以時變性的情緒變化為基礎並嘗試結合各種心理學家提出的情緒模型,包含二維情緒模型和類別式情緒模型,進而提出以Content、Depression、Anxious、Exuberant四種情緒為基礎成分並隱含二維情緒模型資訊的即時性音樂成分分析系統。系統中採用Support Vector Machine當作分類的演算法,針對各種特徵以192首訓練歌曲建立兩兩情緒間的分類模型以此考慮二維情緒模型中的兩個維度單獨分析的情況。特徵值上採用音樂特徵和音訊特徵兩大類,共計11個特徵。並依其特性以不同的音框長度作分析。最後再以音樂情緒的問卷調查來比對程式實驗結果和實際聆聽者感受是否符合。zh_TW
dc.description.abstractWhile listening to music, people's emotions are affected. The common music emotion recognition systems used to provide only one emotion classification. This study presented a time-varying music emotion analysis, and tried to integrate several psychological emotion models, including two-dimensional emotion space and category type. And further to make a time-varying analytic system, based on four basic compositions: Content, Depression, Anxious and Exuberant, which also contains information from two-dimensional emotion space. This system uses Support Vector Machine as classified algorithm. This system uses Support Vector Machine as classified algorithm. Training in a variety of features by 192 music clips as training data to build emotional classification model between each two, in order to inspect the situations for analyzing the two dimensions separately. Feature extractions were divided into two categories: Music Features and Audio Features, total of 11 features. Each feature used different length of frame for analysis. In the end, this study performed a questionnaire survey to compare the program results with the actual listeners’ experiences.en_US
dc.language.isozh_TWen_US
dc.subject音樂情緒辨識zh_TW
dc.subject時變性zh_TW
dc.subject特徵萃取zh_TW
dc.subject音樂資訊檢索zh_TW
dc.subjectMusic emotion recognitionen_US
dc.subjectTime-varyingen_US
dc.subjectFeature extractionen_US
dc.subjectMusic information retrievalen_US
dc.subjectMpeg-7en_US
dc.subjectSupport Vector Machineen_US
dc.title時變性的音樂情緒成份分析研究zh_TW
dc.titleAnalytic research on the time-varying ingredients of emotion evoked by the sound of musicen_US
dc.typeThesisen_US
dc.contributor.department工學院聲音與音樂創意科技碩士學位學程zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 251201.pdf
  2. 251202.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.