Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, WWen_US
dc.contributor.authorWang, CSen_US
dc.date.accessioned2014-12-08T15:01:39Z-
dc.date.available2014-12-08T15:01:39Z-
dc.date.issued1997-07-01en_US
dc.identifier.issn0895-4798en_US
dc.identifier.urihttp://hdl.handle.net/11536/466-
dc.description.abstractThis paper presents algorithms far computing stable Lagrangian invariant subspaces of a Hamiltonian matrix and a symplectic pencil, respectively, having purely imaginary and unimodular eigenvalues. The problems often arise in solving continuous- or discrete-time H-infinity-optimal control, linear-quadratic control and filtering theory, etc. The main approach of our algorithms is to determine an isotropic Jordan subbasis corresponding to purely imaginary (unimodular) eigenvalues by using the associated Jordan basis of the square of the Hamiltonian matrix (the S + S-1-transformation of. the symplectic pencil). The algorithms preserve structures and are numerically efficient and reliable in that they employ only orthogonal transformations in the continuous case.en_US
dc.language.isoen_USen_US
dc.subjectstable Lagrangian subspaceen_US
dc.subjectpurely imaginary eigenvalueen_US
dc.subjectHamiltonian matrixen_US
dc.subjectunimodular eigenvalueen_US
dc.subjectsymplectic pencilen_US
dc.titleOn computing stable Lagrangian subspaces of Hamiltonian matrices and symplectic pencilsen_US
dc.typeArticleen_US
dc.identifier.journalSIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONSen_US
dc.citation.volume18en_US
dc.citation.issue3en_US
dc.citation.spage590en_US
dc.citation.epage614en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
Appears in Collections:Articles


Files in This Item:

  1. A1997XG75900005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.