完整后设资料纪录
DC 栏位 | 值 | 语言 |
---|---|---|
dc.contributor.author | 周恕缘 | en_US |
dc.contributor.author | Chou, Shu-Yuan | en_US |
dc.contributor.author | 周志成 | en_US |
dc.contributor.author | Jou, Chi-Cheng | en_US |
dc.date.accessioned | 2014-12-12T01:46:48Z | - |
dc.date.available | 2014-12-12T01:46:48Z | - |
dc.date.issued | 2011 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079812517 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/46872 | - |
dc.description.abstract | 半导体制程中有上百个步骤,当其中任何机台出现问题,很有可能对良率造成影响。过去依赖有经验的工程师以人工辨识的方法,藉由晶圆瑕疵图辨别制程中发生问题的原因。如此不仅效率较低,且个人判别的标准并不一致,无法给予一个客观的判定。本论文提出一客观的晶圆图相似度指标,以利晶圆图分群及分类。晶圆尺寸、旋转、位移及图形大小是在定义晶圆图间相似度时会面对到的问题。我们以正规化解决了晶圆尺寸不一的问题,并以具有旋转不变性的Zernike动差作为特征解决了影像旋转的问题,最后再以Zernike动差特征空间之欧几里得距离作为不相似度指标。实验证明Zernike动差特征于群聚树分群、加权式KNN分类,及相似比对皆有显着效果。 | zh_TW |
dc.description.abstract | There are hundreds of steps in a semiconductor manufacturing process. If any problems occur in these steps, it might reduce the yield of the wafers. To determine the causes of the yield loss, visual recognition of wafer bin map patterns by experienced engineers is a common practice in present wafer manufacturing industry. It’s neither efficient nor an objective method with inconsistent-recognitions holding by each engineer. In this thesis, we propose an objective similarity measure for wafer bin map classification and clustering. There are four issues in devising wafer map similarity measure including wafer size, image rotation, image translation, and the size of the pattern. We solved the wafer size issue with normalization, and overcame the rotation issue with a feature extraction method called Zernike moment, which ensures the rotation-invariant property. After the feature extraction, we use the Euclidean distance in Zernike moment space as a dissimilarity measure. The experiments showed that the Zernike moment feature had good performances in linkage-tree clustering, distance-weighted KNN classification, and query matching. | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 晶圆图 | zh_TW |
dc.subject | 相似度 | zh_TW |
dc.subject | Zernike动差 | zh_TW |
dc.subject | 群聚树 | zh_TW |
dc.subject | K-最邻近分类法 | zh_TW |
dc.subject | 相似比对 | zh_TW |
dc.subject | 多元尺度法 | zh_TW |
dc.subject | wafer bin map | en_US |
dc.subject | similarity | en_US |
dc.subject | Zernike moment | en_US |
dc.subject | linkage-tree | en_US |
dc.subject | KNN | en_US |
dc.subject | MDS | en_US |
dc.title | 应用于晶圆图分群与分类具旋转不变性之相似度量 | zh_TW |
dc.title | A Rotation-Invariant Similarity Measure for Wafer Bin Maps Clustering and Classification | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 电控工程研究所 | zh_TW |
显示于类别: | Thesis |