Full metadata record
DC FieldValueLanguage
dc.contributor.author陳宣竹en_US
dc.contributor.authorChen, Shiuan-Juen_US
dc.contributor.author羅佩禎en_US
dc.contributor.authorLo, Pei-Chenen_US
dc.date.accessioned2014-12-12T01:47:03Z-
dc.date.available2014-12-12T01:47:03Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079812612en_US
dc.identifier.urihttp://hdl.handle.net/11536/46966-
dc.description.abstract經驗模態分解法(Empirical Mode Decomposition, EMD)的概念已經被採用在希爾伯-黃轉換(Hilbert-Huang Transform, HHT)中將訊號分解成本質模態函數(Intrinsic Mode Function, IMF),EMD法的優點已在廣泛的研究領域中被報導出來,因此我們嘗試調查二維經驗模態分解法(Bidimensional Empirical Mode Decomposition, BEMD)處理受到高頻雜訊所污染影像的可行性。舉例來說,在我們的研究中,微血管的圖片常受到高頻雜訊的干擾。本論文提出BEMD在影像去雜訊上的初步研究,使用的測試影像包括低細節、中細節以及高細節程度影像,並且加入不同雜訊變異數的高斯雜訊,我們提出兩種影像去雜訊的方法:方法一、徹底移除在影像中所包含主要的高頻成份,IMF1。方法二、藉由門檻值的方法,來移除部份IMF1,方法二主要在保留影像的高頻特性。研究結果也會與適應性濾波器做比較。zh_TW
dc.description.abstractConcept and scheme of empirical mode decomposition (EMD) have been adopted to decompose the signal into intrinsic mode functions (IMF) in the HHT (Hilbert-Huang Transform). The advantages of EMD scheme have been reported in a wide scope of research fields. We thus attempted to investigate the feasibility of bidimensional empirical mode decomposition (BEMD) in processing the empirical image data contaminated by high-frequency noise. For example, the capillary imagery in our research of microcirculation system is often interfered by the high-frequency noise. This thesis launched the preliminary study on BEMD employed in image denoising. The tested images include low-detail, medium-detail, and high-detail with additive Gaussian noise with different noise variances. We investigated the performance of two methods in image denoising: 1) (Method I) fully removing IMF1 containing mainly the highest-frequency component in the image, and 2) (Method II) partially removing IMF1 by Thresholding scheme. The design of Method II is aimed to preserve the high-frequency features of the image. The results were also compared with which of the conventional adaptive filtering method.en_US
dc.language.isoen_USen_US
dc.subject二維經驗模態分解zh_TW
dc.subject影像處理zh_TW
dc.subject去雜訊zh_TW
dc.subjectbidimensional empirical mode decompositionen_US
dc.subjectimage processingen_US
dc.subjectdenoiseden_US
dc.title二維經驗模態分解用於影像處理的探討zh_TW
dc.titleInvestigation of bidimensional empirical mode decomposition for Image processingen_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
Appears in Collections:Thesis