完整後設資料紀錄
DC 欄位語言
dc.contributor.author李芷萱en_US
dc.contributor.authorLee, Chih-Hsuanen_US
dc.contributor.author林文偉en_US
dc.contributor.authorLin, Wen-Weien_US
dc.date.accessioned2014-12-12T01:49:16Z-
dc.date.available2014-12-12T01:49:16Z-
dc.date.issued2010en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079820510en_US
dc.identifier.urihttp://hdl.handle.net/11536/47433-
dc.description.abstract求解聲場限制在一具有消散聲能吸音牆壁的空間所衍生之阻尼 上的波動方式。由有限元素法,我們由節點基底的壓力空間將問題離 散和建出有理特徵問題(REP)的矩陣。之後,我們概述三種數值方法, nonlinear Arnoldi method [18]、nonlinear Jacobi-Davidson method [19] 和 trimmed linearization method [7],求解有理特徵問題(REP)。最後, 數值證據顯示選擇trimmed linearization method [7]是最好的方法求解 有理特徵問題(REP),在高精準度的要求下。zh_TW
dc.description.abstractFor computing damped vibration modes of an acoustic fluid confined in a cavity with absorbing walls capable of dissipating acoustic energy. By finite elements, we discrete the problem from the node-based pressure space and construct the rational eigenvalue problem (REP) with coefficients matrices. Then, We summarize three numerical methods, nonlinear Arnoldi method [18], nonlinear Jacobi-Davidson method [19] and trimmed linearization method [7], for solving the rational eigenvalue problem (REP).Finally, numerical evidence shows that choosing the trimmed linearization method is the best way for solving the REP, in high-efficiency requirement.en_US
dc.language.isoen_USen_US
dc.subject有理特徵值問題zh_TW
dc.subjectRational eigenvalue problemen_US
dc.subjectnonlinear Arnoldi methoden_US
dc.subjectnonlinear Jacobi-Davidson methoden_US
dc.subjecttrimmed linearizationen_US
dc.subjectArnoldi algorithmen_US
dc.title求解流固系統衍生之有理特徵值問題數值方法的比較zh_TW
dc.titleComparison of Numerical methods for Rational Eigenvalue Problemsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系數學建模與科學計算碩士班zh_TW
顯示於類別:畢業論文