完整後設資料紀錄
DC 欄位語言
dc.contributor.author李昌翰en_US
dc.contributor.authorLee, Chang-Hanen_US
dc.contributor.author林文偉en_US
dc.contributor.authorLin, Wen-Weien_US
dc.date.accessioned2014-12-12T01:49:35Z-
dc.date.available2014-12-12T01:49:35Z-
dc.date.issued2010en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079822510en_US
dc.identifier.urihttp://hdl.handle.net/11536/47510-
dc.description.abstract為了利用數值方法去探討三維光子晶體的能帶結構,我們需要解由Maxwell方程組所決定的特徵值問題,除非找到一個合適的解特徵值的方法才能有效率地計算特徵值問題,利用Yee’s scheme離散方法得到此特徵值問題,我們提出使用Shift-and-invert Lanczos方法和Shifted Lanczos方法來解決由此產生的特徵值問題。此外,我們從ARPACK中改寫的Lanczos方法在Lanczos過程中有較佳的計算量。zh_TW
dc.description.abstractTo explore band structures of three-dimensional photonic crystals numerically, we need to solve the eigenvalue problems derived from the governing Maxwell's equations. The solutions of these eigenvalue problems cannot be computed efficiently unless a suitable eigensolver. Taking eigenvalue problems due to Yee's scheme as examples, we propose using Shift-and-invert Lanczos method and shifted Lanczos method to solve the resulting eigenvalue problems. We rewrite the Lanczos method from ARPACK and find it better calculations in the Lanczos process.en_US
dc.language.isoen_USen_US
dc.subject光子晶體zh_TW
dc.subjectphotonic crystalen_US
dc.subjectLanczosen_US
dc.title光子晶體所衍生之高維度零空間特徵值問題在平移Lanczos下的影響zh_TW
dc.titleEffects of the Refined Shifted Lanczos Method for Photonic Crystal Eigenproblems with Large Dimensional Null Spacesen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文