標題: 以模型設計方法建構可預測功能之基因電路
Construction of genetic circuit with predicted functions by model-based design method
作者: 高敏智
Kao, Min-Chih
曾慶平
Tseng, Ching-Ping
生物科技學系
關鍵字: 合成生物學;基因迴圈;生物磚;模組;synthetic biology;genetic circuit;biobrick;model
公開日期: 2011
摘要: 合成生物學是現代生物學的新興研究領域,其利用基因重組技術製造各種生物元件,組合成生物基因迴路,讓其依循可預期的方式表現出特定功能,控制細胞進行一系列的工作。DNA可視為構築生物系統的藍圖,DNA轉譯出來的蛋白質則扮演著執行者的角色。藉著不同蛋白質間的交互作用,可以讓生物穩健的生存並表現出特殊功能。蛋白質的表現量主要受控於啟動子(promoter)負責調控的轉錄層級以及核糖體結合區(ribosomal binding site)控制的轉譯層級。本篇論文中,引進了iGEM元件系統進行DNA設計與組裝。我們將啟動子以及核糖體結合區整合為一個控制蛋白質表現量之功能裝置,並定量蛋白質表現量與細菌密度之關係。當下游基因搭配不同啟動子與核糖體結合區域,即會有相對應的蛋白質表現量輸出。當設計者預期表現特定量的蛋白質,只需從我們建立的資料庫中挑選相對應組合的蛋白質表現之功能性裝置後,即可得到預期的蛋白質表現量。
在實驗設計上,我們在分成三部份進行:
1) 建構蛋白質表現系統質體並測量其蛋白質輸出:我們從iGEM元件庫中挑選了四個不同轉錄強度的啟動子搭配三個不同轉譯強度的核糖體結合區,總共十二種組合的蛋白質表現之功能性裝置。以綠螢光蛋白當下游基因進行表現,並用流式細胞儀偵測其隨著時間的螢光訊號輸出。
2)建立數學模型定量每組蛋白質表現之功能性裝置:藉由第一部分的實驗數據進行蛋白質表現系統數學模型的建立並定量蛋白質表現系統表現強度與細菌密度之關係。
3)系統應用及驗證:我們設計表現抑制蛋白控制下游基因表現之基因迴路,系統中具有上游基因表現抑制下游基因表現輸出的行為。兩個系統皆可以利用第二部分參數預測其交互作用後的行為與蛋白質輸出量,證實元件規格化理論可用在複雜基因迴圈中。
本篇論文中整合模擬及實驗,可定性及定量描述各生物元件及基因間的交互作用,由下而上更瞭解基因網路間的調控方式,提出更佳方式在大腸桿菌中建構穩定的生物基因迴路。而且當生物元件資料庫擴增後,可以依各元件特性,用電子電路設計概念,由生物元件資料庫中組合出最適合的基因迴路,用來改造菌株。這項計畫的成果將可應用於設計經濟效益最佳的能源生產途徑,並拓展到產業應用。
Genetic engineering with recombinant DNA is a powerful and widespread technology that enables researchers to redesign life forms by modifying DNA fragments. Programming and controlling cell behavior requires fine control the protein expression levels. Previous studies provide several methods to predict the transcription rates of promoters and translation rates of ribosome binding sites (RBSs) respectively. However, the protein expression level with time is hard to predict properly by those methods. To overcome this problem, we selected four promoters and three RBSs with different regulation strength and constructed 12 protein expression devices which combine promoter, RBS and green fluorescent protein (GFP) in Escherichia coli. The GFP expression levels with time were measured using a flow cytometry, and the experimental data can used to characterize a protein expression rate of a protein expression device which contains a promoters and a RBS. A dynamic model that captured the experimentally observed differences for each protein expression device was developed in this study. Using this model, we can define the protein expression rate in the different E. coli population density for the protein expression device. To demonstrate reverse engineering, this model was used to predict the protein expression level in repressor-controlled genetic circuits, and the experimental results consistent with our prediction. Thus, this model enable us to rational connect a promoter and a RBS to obtain a target protein expression level in a complex genetic circuits. Our method can quantitative the protein expression rate at different E.coli population density and can implement a genetic circuit with desired function in E.coli.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079828512
http://hdl.handle.net/11536/47720
Appears in Collections:Thesis