完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 蔡幸育 | en_US |
dc.contributor.author | Tsai, Hsing-Yu | en_US |
dc.contributor.author | 荊宇泰 | en_US |
dc.contributor.author | Chin, Yu-Tai | en_US |
dc.date.accessioned | 2014-12-12T01:50:29Z | - |
dc.date.available | 2014-12-12T01:50:29Z | - |
dc.date.issued | 2010 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079830511 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/47762 | - |
dc.description.abstract | 標準睡眠檢查使用的多通道生理訊號監測儀,需要在受測者身上黏貼大量電極,不僅事前黏貼及事後的清潔相當麻煩,繁亂的線路也會對睡眠品質造成不良影響,不論是對醫事人員或是受測者而言,都是一個痛苦的過程,也嚴重限制了能進行睡眠檢查的環境。而由於床位的不足及睡眠資料判讀方法的繁複,檢查前後往往需要漫長的等候,這樣的等待對於睡眠品質完全沒有幫助,也相當的沒有效率。在醫療資源有限的情況下,若能利用簡化的檢查預先將不需進行完整睡眠檢查的病患剔除,對醫事人員及病患都會是個福音。本研究提出了利用前額腦波進行自動化睡眠分期的方法,以較少的電極以及自動化的判讀機制,利用多個分類器組成階層式分類架構,在缺乏眼動訊號而難以判讀快速動眼期的情況下,與專家判讀間達到了70%的一致性,並且可分辨Wake、N1、N2、N3及REM等五個不同睡眠期。不僅簡化了電極的黏貼清潔步驟,提供患者於家中自行進行初步檢查的可能性,也為受測者節省下大量時間金錢上的花費,並且可以省去許多不必要的醫療資源浪費。而簡化後的系統,更是可以大幅放寬了睡眠檢查對醫療環境的依賴,提供了居家長期監測睡眠品質的可能性。 | zh_TW |
dc.description.abstract | Polysomnography (PSG) is a common used method to diagnose sleep problems. However, a standard sleep study is a time consuming manual process. One shall wait for few weeks before proceeding a sleep study and wait another week for the report. Besides the waiting, the wires attached to a subject, the conductive gel applied to the electrodes and the unfamiliar environment would all disturb one’s sleep. In this thesis, a light weight sleep stage scoring system using forehead channels is introduced. Multiple classifiers were combined into a hierarchical classification system to perform automatic sleep stage classification using only Fp1 and Fp2 EEG signals. This system can separate REM sleep without EOG signals and achieve about 70% of agreement with expert’s scoring result. This system could provide a preliminary result and help deciding if a standard sleep study is required. This system also provides the possibility of long term sleep monitoring at home. | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 前額 | zh_TW |
dc.subject | 腦電波 | zh_TW |
dc.subject | 自動化 | zh_TW |
dc.subject | 睡眠分期 | zh_TW |
dc.subject | Forehead | en_US |
dc.subject | EEG | en_US |
dc.subject | Automatic | en_US |
dc.subject | Sleep Stage | en_US |
dc.subject | Classification | en_US |
dc.title | 基於前額腦波訊號之自動化睡眠分期判讀系統 | zh_TW |
dc.title | Automatic Sleep Stage Classification System Using Forehead EEG Signals | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 生醫工程研究所 | zh_TW |
顯示於類別: | 畢業論文 |