完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, LAen_US
dc.date.accessioned2014-12-08T15:01:40Z-
dc.date.available2014-12-08T15:01:40Z-
dc.date.issued1997-07-01en_US
dc.identifier.issn1017-0405en_US
dc.identifier.urihttp://hdl.handle.net/11536/478-
dc.description.abstractWe propose and study a class of weighted trimmed means based on the symmetric quantile functions for the location and linear regression models. A robustness comparison with the underlying distribution of a symmetric-type heavy tail is given. The weighted trimmed mean in optimal trimming under symmetric distributions is shown to have an asymptotic variance very close to the Cramer-Rao lower bound. For fixed weight setting, the weighted trimmed mean is still relatively more efficient in terms of asymptotic variance than the trimmed mean based on regression quantiles. From the parametric point of view, the computationally easy weighted trimmed mean is shown to be an efficient alternative to maximum likelihood estimation which is usually computationally difficult for most underlying distributions except the ideal case of normal ones. From the nonparametric point of view, this weighted trimmed mean is shown to be an efficient alternative robust estimator. A methodology for confidence ellipsoids and hypothesis testing based on the weighted trimmed mean is also introduced.en_US
dc.language.isoen_USen_US
dc.subjectinitial estimatoren_US
dc.subjectsymmetric quantileen_US
dc.subjectweighted trimmed meanen_US
dc.titleAn efficient class of weighted trimmed means for linear regression modelsen_US
dc.typeArticleen_US
dc.identifier.journalSTATISTICA SINICAen_US
dc.citation.volume7en_US
dc.citation.issue3en_US
dc.citation.spage669en_US
dc.citation.epage686en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:A1997XQ63000007-
dc.citation.woscount6-
顯示於類別:期刊論文